利用参考调校语言模型检测阅读错误

Changliang Liu, Fuping Pan, Fengpei Ge, Bin Dong, Yonghong Yan
{"title":"利用参考调校语言模型检测阅读错误","authors":"Changliang Liu, Fuping Pan, Fengpei Ge, Bin Dong, Yonghong Yan","doi":"10.1109/CHINSL.2008.ECP.87","DOIUrl":null,"url":null,"abstract":"For a reading tutor, the reference content which the reader reads is known beforehand. This apriori information is very important in automatic detection of reading miscues. This paper proposed two methods to incorporate the reference information into LVCSR framework to improve the performance of miscue detection. The two methods both tune the n-gram Language Model (LM) probabilities dynamically in the decoding process based on the analysis of current reference sentence. The first method weighs the LM probability directly if current n-gram exists in the reference, and the second method takes a liner combination of the original LM probability and the reference probability. The experiments on a Chinese Mandarin reading corpus proved the effectiveness of both methods. The detection error rate and false alarm rate are decreased by 33.1 % and 35.5% respectively for the best method.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Reference to Tune Language Model for Detection of Reading Miscues\",\"authors\":\"Changliang Liu, Fuping Pan, Fengpei Ge, Bin Dong, Yonghong Yan\",\"doi\":\"10.1109/CHINSL.2008.ECP.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a reading tutor, the reference content which the reader reads is known beforehand. This apriori information is very important in automatic detection of reading miscues. This paper proposed two methods to incorporate the reference information into LVCSR framework to improve the performance of miscue detection. The two methods both tune the n-gram Language Model (LM) probabilities dynamically in the decoding process based on the analysis of current reference sentence. The first method weighs the LM probability directly if current n-gram exists in the reference, and the second method takes a liner combination of the original LM probability and the reference probability. The experiments on a Chinese Mandarin reading corpus proved the effectiveness of both methods. The detection error rate and false alarm rate are decreased by 33.1 % and 35.5% respectively for the best method.\",\"PeriodicalId\":291958,\"journal\":{\"name\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 6th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CHINSL.2008.ECP.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于阅读导师来说,读者阅读的参考内容是事先知道的。这些先验信息在自动检测阅读错误中是非常重要的。本文提出了两种将参考信息纳入LVCSR框架的方法,以提高错误检测的性能。这两种方法都是基于对当前参考句子的分析,在解码过程中动态调整n-gram语言模型(LM)的概率。第一种方法是在当前n-gram存在的情况下直接对LM概率进行加权,第二种方法是将原始LM概率与参考概率进行线性组合。在汉语普通话阅读语料库上的实验证明了两种方法的有效性。该方法的检测错误率和虚警率分别降低了33.1%和35.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Reference to Tune Language Model for Detection of Reading Miscues
For a reading tutor, the reference content which the reader reads is known beforehand. This apriori information is very important in automatic detection of reading miscues. This paper proposed two methods to incorporate the reference information into LVCSR framework to improve the performance of miscue detection. The two methods both tune the n-gram Language Model (LM) probabilities dynamically in the decoding process based on the analysis of current reference sentence. The first method weighs the LM probability directly if current n-gram exists in the reference, and the second method takes a liner combination of the original LM probability and the reference probability. The experiments on a Chinese Mandarin reading corpus proved the effectiveness of both methods. The detection error rate and false alarm rate are decreased by 33.1 % and 35.5% respectively for the best method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信