高斯设置下二阶阈值函数的多对数PRG

D. Kane
{"title":"高斯设置下二阶阈值函数的多对数PRG","authors":"D. Kane","doi":"10.4230/LIPIcs.CCC.2015.567","DOIUrl":null,"url":null,"abstract":"We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions. \n \nOur generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Polylogarithmic PRG for Degree $2$ Threshold Functions in the Gaussian Setting\",\"authors\":\"D. Kane\",\"doi\":\"10.4230/LIPIcs.CCC.2015.567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions. \\n \\nOur generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2015.567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2015.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

构造并分析了一种新的基于高斯测度的2次多项式阈值函数伪随机生成器。特别是,我们得到了一个种子长度在维数和期望误差上都是多对数的,比现有结构有了很大的改进。我们的生成器是针对只读一次分支程序的伪随机生成器的适当加权平均值。这个分析需要一些想法,包括一个混合论证和一个结构结果,它允许我们把我们的2度阈值函数当作一个线性多项式和一个近似线性多项式的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Polylogarithmic PRG for Degree $2$ Threshold Functions in the Gaussian Setting
We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions. Our generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信