{"title":"高斯设置下二阶阈值函数的多对数PRG","authors":"D. Kane","doi":"10.4230/LIPIcs.CCC.2015.567","DOIUrl":null,"url":null,"abstract":"We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions. \n \nOur generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Polylogarithmic PRG for Degree $2$ Threshold Functions in the Gaussian Setting\",\"authors\":\"D. Kane\",\"doi\":\"10.4230/LIPIcs.CCC.2015.567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions. \\n \\nOur generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.\",\"PeriodicalId\":246506,\"journal\":{\"name\":\"Cybersecurity and Cyberforensics Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybersecurity and Cyberforensics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.CCC.2015.567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2015.567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Polylogarithmic PRG for Degree $2$ Threshold Functions in the Gaussian Setting
We construct and analyze a new pseudorandom generator for degree 2 polynomial threshold functions with respect to the Gaussian measure. In particular, we obtain one whose seed length is polylogarithmic in both the dimension and the desired error, a substantial improvement over existing constructions.
Our generator is obtained as an appropriate weighted average of pseudorandom generators against read once branching programs. The analysis requires a number of ideas including a hybrid argument and a structural result that allows us to treat our degree 2 threshold function as a function of a number of linear polynomials and one approximately linear polynomial.