三元字母表上部分单词的模式避免

Adam Gagol
{"title":"三元字母表上部分单词的模式避免","authors":"Adam Gagol","doi":"10.1515/UMCSMATH-2015-0013","DOIUrl":null,"url":null,"abstract":"Blanched-Sadri and Woodhouse in 2013 have proven the conjecture of Cassaigne, stating that any pattern with \\(m\\) distinct variables and of length at least \\(2^m\\) is avoidable over a ternary alphabet and if the length is at least \\(3\\cdot 2^{m-1}\\) it is avoidable over a binary alphabet. They conjectured that similar theorems are true for partial words – sequences, in which some characters are left “blank”. Using method of entropy compression, we obtain the partial words version of the theorem for ternary words.","PeriodicalId":340819,"journal":{"name":"Annales Umcs, Mathematica","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pattern avoidance in partial words over a ternary alphabet\",\"authors\":\"Adam Gagol\",\"doi\":\"10.1515/UMCSMATH-2015-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blanched-Sadri and Woodhouse in 2013 have proven the conjecture of Cassaigne, stating that any pattern with \\\\(m\\\\) distinct variables and of length at least \\\\(2^m\\\\) is avoidable over a ternary alphabet and if the length is at least \\\\(3\\\\cdot 2^{m-1}\\\\) it is avoidable over a binary alphabet. They conjectured that similar theorems are true for partial words – sequences, in which some characters are left “blank”. Using method of entropy compression, we obtain the partial words version of the theorem for ternary words.\",\"PeriodicalId\":340819,\"journal\":{\"name\":\"Annales Umcs, Mathematica\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Umcs, Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/UMCSMATH-2015-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Umcs, Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/UMCSMATH-2015-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

blanche - sadri和Woodhouse在2013年证明了casassaigne的猜想,指出任何具有\(m\)不同变量且长度至少为\(2^m\)的模式在三元字母表中都是可避免的,如果长度至少为\(3\cdot 2^{m-1}\),则在二进制字母表中是可避免的。他们推测,类似的定理也适用于部分词序列,其中一些字符是“空白”的。利用熵压缩的方法,我们得到了三元词定理的部分词版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern avoidance in partial words over a ternary alphabet
Blanched-Sadri and Woodhouse in 2013 have proven the conjecture of Cassaigne, stating that any pattern with \(m\) distinct variables and of length at least \(2^m\) is avoidable over a ternary alphabet and if the length is at least \(3\cdot 2^{m-1}\) it is avoidable over a binary alphabet. They conjectured that similar theorems are true for partial words – sequences, in which some characters are left “blank”. Using method of entropy compression, we obtain the partial words version of the theorem for ternary words.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信