P. Huffman, J. Ferreira, J. Correia, A. Jesus, G. Lesiuk, F. Berto, A. Fernández‐Canteli, G. Glinka
{"title":"基于应变能密度模型的压力容器低碳钢疲劳裂纹扩展预测","authors":"P. Huffman, J. Ferreira, J. Correia, A. Jesus, G. Lesiuk, F. Berto, A. Fernández‐Canteli, G. Glinka","doi":"10.3221/IGF-ESIS.42.09","DOIUrl":null,"url":null,"abstract":"Fatigue crack growth (FCG) rates have traditionally been formulated from fracture mechanics, whereas fatigue crack initiation has been empirically described using stress-life or strain-life methods. More recently, there has been efforts towards the use of the local stress-strain and similitude concepts to formulate fatigue crack growth rates. A new model has been developed which derives stress-life, strain-life and fatigue crack growth rates from strain energy density concepts. This new model has the advantage to predict an intrinsic stress ratio effect of the form ?ar=(?amp)?·(?max )(1-?), which is dependent on the cyclic stress-strain behaviour of the material. This new fatigue crack propagation model was proposed by Huffman based on Walkerlike strain-life relation. This model is applied to FCG data available for the P355NL1 pressure vessel steel. A comparison of the experimental results and the Huffman crack propagation model is made.","PeriodicalId":300868,"journal":{"name":"Fracture and Structural Integrity","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Fatigue crack propagation prediction of a pressure vessel mild steel based on a strain energy density model\",\"authors\":\"P. Huffman, J. Ferreira, J. Correia, A. Jesus, G. Lesiuk, F. Berto, A. Fernández‐Canteli, G. Glinka\",\"doi\":\"10.3221/IGF-ESIS.42.09\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fatigue crack growth (FCG) rates have traditionally been formulated from fracture mechanics, whereas fatigue crack initiation has been empirically described using stress-life or strain-life methods. More recently, there has been efforts towards the use of the local stress-strain and similitude concepts to formulate fatigue crack growth rates. A new model has been developed which derives stress-life, strain-life and fatigue crack growth rates from strain energy density concepts. This new model has the advantage to predict an intrinsic stress ratio effect of the form ?ar=(?amp)?·(?max )(1-?), which is dependent on the cyclic stress-strain behaviour of the material. This new fatigue crack propagation model was proposed by Huffman based on Walkerlike strain-life relation. This model is applied to FCG data available for the P355NL1 pressure vessel steel. A comparison of the experimental results and the Huffman crack propagation model is made.\",\"PeriodicalId\":300868,\"journal\":{\"name\":\"Fracture and Structural Integrity\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fracture and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3221/IGF-ESIS.42.09\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fracture and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3221/IGF-ESIS.42.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fatigue crack propagation prediction of a pressure vessel mild steel based on a strain energy density model
Fatigue crack growth (FCG) rates have traditionally been formulated from fracture mechanics, whereas fatigue crack initiation has been empirically described using stress-life or strain-life methods. More recently, there has been efforts towards the use of the local stress-strain and similitude concepts to formulate fatigue crack growth rates. A new model has been developed which derives stress-life, strain-life and fatigue crack growth rates from strain energy density concepts. This new model has the advantage to predict an intrinsic stress ratio effect of the form ?ar=(?amp)?·(?max )(1-?), which is dependent on the cyclic stress-strain behaviour of the material. This new fatigue crack propagation model was proposed by Huffman based on Walkerlike strain-life relation. This model is applied to FCG data available for the P355NL1 pressure vessel steel. A comparison of the experimental results and the Huffman crack propagation model is made.