时变时滞和时间尺度上脉冲效应的fcnn反周期解的存在性与稳定性

H. Bao
{"title":"时变时滞和时间尺度上脉冲效应的fcnn反周期解的存在性与稳定性","authors":"H. Bao","doi":"10.1504/IJCSM.2018.10016505","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence and global exponential stability of anti-periodic solutions for fuzzy cellular neural networks (FCNNs) with time-varying delays and impulsive effects on time scales. Using the theory of coincidence degree, inequality technique and constructing some suitable Lyapunov functional, some sufficient conditions are obtained for the existence and global exponential stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales. These results are less restrictive than those given in the earlier references. Moreover an example is provided to illustrate results obtained.","PeriodicalId":399731,"journal":{"name":"Int. J. Comput. Sci. Math.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Existence and stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales\",\"authors\":\"H. Bao\",\"doi\":\"10.1504/IJCSM.2018.10016505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the existence and global exponential stability of anti-periodic solutions for fuzzy cellular neural networks (FCNNs) with time-varying delays and impulsive effects on time scales. Using the theory of coincidence degree, inequality technique and constructing some suitable Lyapunov functional, some sufficient conditions are obtained for the existence and global exponential stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales. These results are less restrictive than those given in the earlier references. Moreover an example is provided to illustrate results obtained.\",\"PeriodicalId\":399731,\"journal\":{\"name\":\"Int. J. Comput. Sci. Math.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJCSM.2018.10016505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSM.2018.10016505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究具有时变时滞和脉冲效应的模糊细胞神经网络(FCNNs)反周期解的存在性和全局指数稳定性。利用重合度理论、不等式技术和构造合适的Lyapunov泛函,得到了具有时变时滞和时间尺度上脉冲效应的fcnn反周期解存在性和全局指数稳定性的充分条件。这些结果比前面参考文献中给出的结果限制更少。此外,还提供了一个实例来说明所得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales
This paper deals with the existence and global exponential stability of anti-periodic solutions for fuzzy cellular neural networks (FCNNs) with time-varying delays and impulsive effects on time scales. Using the theory of coincidence degree, inequality technique and constructing some suitable Lyapunov functional, some sufficient conditions are obtained for the existence and global exponential stability of anti-periodic solutions for FCNNs with time-varying delays and impulsive effects on time scales. These results are less restrictive than those given in the earlier references. Moreover an example is provided to illustrate results obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信