{"title":"传感器网络联合源定位与传感器位置优化","authors":"Ming Sun, Zhenhua Ma, K. C. Ho","doi":"10.1109/ICASSP.2013.6638415","DOIUrl":null,"url":null,"abstract":"Modern localization systems/platforms such as sensor networks often experience uncertainty in the sensor positions. Improving the sensor positions is necessary in order to achieve better localization performance. This paper proposes a joint estimator for locating multiple unknown sources and refining the sensor positions using TOA measurements. Rather than resorting to the traditional iterative nonlinear least-squares approach that requires careful initializations, the proposed estimator is algebraic and computationally attractive. The small noise analysis shows that the proposed estimator is able to attain the CRLB performance for both the unknown sources and the sensor positions. Simulations support the efficiency of the proposed estimator.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Joint source localization and sensor position refinement for sensor networks\",\"authors\":\"Ming Sun, Zhenhua Ma, K. C. Ho\",\"doi\":\"10.1109/ICASSP.2013.6638415\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern localization systems/platforms such as sensor networks often experience uncertainty in the sensor positions. Improving the sensor positions is necessary in order to achieve better localization performance. This paper proposes a joint estimator for locating multiple unknown sources and refining the sensor positions using TOA measurements. Rather than resorting to the traditional iterative nonlinear least-squares approach that requires careful initializations, the proposed estimator is algebraic and computationally attractive. The small noise analysis shows that the proposed estimator is able to attain the CRLB performance for both the unknown sources and the sensor positions. Simulations support the efficiency of the proposed estimator.\",\"PeriodicalId\":183968,\"journal\":{\"name\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Acoustics, Speech and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2013.6638415\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint source localization and sensor position refinement for sensor networks
Modern localization systems/platforms such as sensor networks often experience uncertainty in the sensor positions. Improving the sensor positions is necessary in order to achieve better localization performance. This paper proposes a joint estimator for locating multiple unknown sources and refining the sensor positions using TOA measurements. Rather than resorting to the traditional iterative nonlinear least-squares approach that requires careful initializations, the proposed estimator is algebraic and computationally attractive. The small noise analysis shows that the proposed estimator is able to attain the CRLB performance for both the unknown sources and the sensor positions. Simulations support the efficiency of the proposed estimator.