连续时间自适应鲁棒控制

Theerawat Bhudisaksang, Á. Cartea
{"title":"连续时间自适应鲁棒控制","authors":"Theerawat Bhudisaksang, Á. Cartea","doi":"10.2139/ssrn.3571991","DOIUrl":null,"url":null,"abstract":"We propose a continuous-time version of the adaptive robust methodology introduced in Bielecki et al. (2019). An agent solves a stochastic control problem where the underlying uncertainty follows a jump-diffusion process and the agent does not know the drift parameters of the process. The agent considers a set of alternative measures to make the control problem robust to model misspecification and employs a continuous-time estimator to learn the value of the unknown parameters to make the control problem adaptive to the arrival of new information. We use measurable selection theorems to prove the dynamic programming principle of the adaptive robust problem and show that the value function of the agent is characterised by a non-linear partial differential equation. As an example, we derive in closed-form the optimal adaptive robust strategy for an agent who acquires a large number of shares in an order-driven market and illustrates the financial performance of the execution strategy.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive Robust Control in Continuous-Time\",\"authors\":\"Theerawat Bhudisaksang, Á. Cartea\",\"doi\":\"10.2139/ssrn.3571991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a continuous-time version of the adaptive robust methodology introduced in Bielecki et al. (2019). An agent solves a stochastic control problem where the underlying uncertainty follows a jump-diffusion process and the agent does not know the drift parameters of the process. The agent considers a set of alternative measures to make the control problem robust to model misspecification and employs a continuous-time estimator to learn the value of the unknown parameters to make the control problem adaptive to the arrival of new information. We use measurable selection theorems to prove the dynamic programming principle of the adaptive robust problem and show that the value function of the agent is characterised by a non-linear partial differential equation. As an example, we derive in closed-form the optimal adaptive robust strategy for an agent who acquires a large number of shares in an order-driven market and illustrates the financial performance of the execution strategy.\",\"PeriodicalId\":239853,\"journal\":{\"name\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3571991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3571991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了Bielecki等人(2019)引入的自适应鲁棒方法的连续时间版本。智能体解决了一个随机控制问题,其中潜在的不确定性遵循跳跃扩散过程,并且智能体不知道该过程的漂移参数。该智能体考虑了一组备选措施,使控制问题对模型错规范具有鲁棒性,并使用连续时间估计器学习未知参数的值,使控制问题对新信息的到来具有自适应能力。利用可测选择定理证明了自适应鲁棒问题的动态规划原理,并证明了智能体的值函数是一个非线性偏微分方程。作为一个例子,我们以封闭形式导出了在订单驱动市场中获得大量股票的代理的最优自适应稳健策略,并说明了执行策略的财务绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Robust Control in Continuous-Time
We propose a continuous-time version of the adaptive robust methodology introduced in Bielecki et al. (2019). An agent solves a stochastic control problem where the underlying uncertainty follows a jump-diffusion process and the agent does not know the drift parameters of the process. The agent considers a set of alternative measures to make the control problem robust to model misspecification and employs a continuous-time estimator to learn the value of the unknown parameters to make the control problem adaptive to the arrival of new information. We use measurable selection theorems to prove the dynamic programming principle of the adaptive robust problem and show that the value function of the agent is characterised by a non-linear partial differential equation. As an example, we derive in closed-form the optimal adaptive robust strategy for an agent who acquires a large number of shares in an order-driven market and illustrates the financial performance of the execution strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信