双管换热器的传热和流体流动,第二部分:数值研究

Shreyas Kotian, N. Methekar, Nishant Jain, P. Naik
{"title":"双管换热器的传热和流体流动,第二部分:数值研究","authors":"Shreyas Kotian, N. Methekar, Nishant Jain, P. Naik","doi":"10.51983/arme-2020.9.2.2478","DOIUrl":null,"url":null,"abstract":"Analysis of thermo hydraulic characteristics in a simple configuration of the double-pipe heat exchangers adds a great value to the design of heat exchangers. This paper presents a comparison of the experimental observations and numerical predictions for the thermal characteristics of the double pipe heat exchanger. A CAD design was developed and the Realizable k-ε mathematical model coupled with enhanced wall treatment gave the closest results. Experiments were performed for 60 ≤ Re ≤ 240 for two different inlet temperatures of the hot fluid, 50°C, and 70°C keeping the inlet temperature of the cold fluid constant at 31°C. Temperature gradients extracted from ANSYS Fluent were compared with the experimental data. Further, pressure and temperature contours for the hot and cold streams were generated to analyze the performance parameters.","PeriodicalId":340179,"journal":{"name":"Asian Review of Mechanical Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer and Fluid Flow in Double Pipe Heat Exchanger, Part II: Numerical Investigation\",\"authors\":\"Shreyas Kotian, N. Methekar, Nishant Jain, P. Naik\",\"doi\":\"10.51983/arme-2020.9.2.2478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysis of thermo hydraulic characteristics in a simple configuration of the double-pipe heat exchangers adds a great value to the design of heat exchangers. This paper presents a comparison of the experimental observations and numerical predictions for the thermal characteristics of the double pipe heat exchanger. A CAD design was developed and the Realizable k-ε mathematical model coupled with enhanced wall treatment gave the closest results. Experiments were performed for 60 ≤ Re ≤ 240 for two different inlet temperatures of the hot fluid, 50°C, and 70°C keeping the inlet temperature of the cold fluid constant at 31°C. Temperature gradients extracted from ANSYS Fluent were compared with the experimental data. Further, pressure and temperature contours for the hot and cold streams were generated to analyze the performance parameters.\",\"PeriodicalId\":340179,\"journal\":{\"name\":\"Asian Review of Mechanical Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Review of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/arme-2020.9.2.2478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Review of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/arme-2020.9.2.2478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析一种简单结构的双管换热器的热水力特性,对换热器的设计具有重要的参考价值。本文对双管换热器的热特性进行了实验观测与数值预测的比较。开发了CAD设计,Realizable k-ε数学模型与强化壁面处理相结合,得到了最接近的结果。在热流体进口温度为50℃和70℃的条件下,在60≤Re≤240的条件下进行实验,冷流体进口温度为31℃。将ANSYS Fluent提取的温度梯度与实验数据进行对比。此外,还生成了冷热流的压力和温度曲线,以分析性能参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heat Transfer and Fluid Flow in Double Pipe Heat Exchanger, Part II: Numerical Investigation
Analysis of thermo hydraulic characteristics in a simple configuration of the double-pipe heat exchangers adds a great value to the design of heat exchangers. This paper presents a comparison of the experimental observations and numerical predictions for the thermal characteristics of the double pipe heat exchanger. A CAD design was developed and the Realizable k-ε mathematical model coupled with enhanced wall treatment gave the closest results. Experiments were performed for 60 ≤ Re ≤ 240 for two different inlet temperatures of the hot fluid, 50°C, and 70°C keeping the inlet temperature of the cold fluid constant at 31°C. Temperature gradients extracted from ANSYS Fluent were compared with the experimental data. Further, pressure and temperature contours for the hot and cold streams were generated to analyze the performance parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信