应用评级分类在Play商店使用梯度提升算法

O. Lengkong, Rodney Maringka
{"title":"应用评级分类在Play商店使用梯度提升算法","authors":"O. Lengkong, Rodney Maringka","doi":"10.1109/ICORIS50180.2020.9320756","DOIUrl":null,"url":null,"abstract":"The increasing number of Android apps available on Google Play Store with the developers' advantages has attracted many Android apps developers' attention. To benefit from developing Android apps is to know the characteristics of high rated applications on the Google Play Store. This research will explore the features of Size, installs, reviews, types (free/paid), rating, Category, content rating, and Price on apps on Google Play Store to determine the characteristics of high rated apps. This research uses a random-forest classifier to identify the most significant features in high rated apps on Google Play Store. This research uses the Gradient Boost Algorithm to identify the most influential attributes in high rating apps on Google Play Store. To classify the high rated apps, writers use the Gradient Boost algorithm that performs better than Random Forest, K-NN, and Decision Tree algorithm with a 99.93% accuracy, 99.91% recall, 99.91% precision, and 0.062 Root Mean Squared Error.","PeriodicalId":280589,"journal":{"name":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Apps Rating Classification on Play Store Using Gradient Boost Algorithm\",\"authors\":\"O. Lengkong, Rodney Maringka\",\"doi\":\"10.1109/ICORIS50180.2020.9320756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of Android apps available on Google Play Store with the developers' advantages has attracted many Android apps developers' attention. To benefit from developing Android apps is to know the characteristics of high rated applications on the Google Play Store. This research will explore the features of Size, installs, reviews, types (free/paid), rating, Category, content rating, and Price on apps on Google Play Store to determine the characteristics of high rated apps. This research uses a random-forest classifier to identify the most significant features in high rated apps on Google Play Store. This research uses the Gradient Boost Algorithm to identify the most influential attributes in high rating apps on Google Play Store. To classify the high rated apps, writers use the Gradient Boost algorithm that performs better than Random Forest, K-NN, and Decision Tree algorithm with a 99.93% accuracy, 99.91% recall, 99.91% precision, and 0.062 Root Mean Squared Error.\",\"PeriodicalId\":280589,\"journal\":{\"name\":\"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORIS50180.2020.9320756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Conference on Cybernetics and Intelligent System (ICORIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORIS50180.2020.9320756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Google Play Store上越来越多的Android应用凭借其自身的优势吸引了众多Android应用开发者的注意。要从开发Android应用中获益,就要了解Google Play Store中高评价应用的特点。该研究将探讨Google Play Store上应用的大小、安装量、评论、类型(免费/付费)、评级、类别、内容评级和价格等特征,以确定高评级应用的特征。这项研究使用随机森林分类器来识别Google Play Store上高评价应用的最重要功能。本研究使用梯度提升算法来识别Google Play Store高评价应用中最具影响力的属性。为了对高评分的应用进行分类,作者使用梯度提升算法,该算法的性能优于随机森林、K-NN和决策树算法,准确率为99.93%,召回率为99.91%,精度为99.91%,均方根误差为0.062。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apps Rating Classification on Play Store Using Gradient Boost Algorithm
The increasing number of Android apps available on Google Play Store with the developers' advantages has attracted many Android apps developers' attention. To benefit from developing Android apps is to know the characteristics of high rated applications on the Google Play Store. This research will explore the features of Size, installs, reviews, types (free/paid), rating, Category, content rating, and Price on apps on Google Play Store to determine the characteristics of high rated apps. This research uses a random-forest classifier to identify the most significant features in high rated apps on Google Play Store. This research uses the Gradient Boost Algorithm to identify the most influential attributes in high rating apps on Google Play Store. To classify the high rated apps, writers use the Gradient Boost algorithm that performs better than Random Forest, K-NN, and Decision Tree algorithm with a 99.93% accuracy, 99.91% recall, 99.91% precision, and 0.062 Root Mean Squared Error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信