{"title":"基于物联网医疗保健系统的拉普拉斯角位移安全数据传输","authors":"P. Srinivasan, A. Kannagi, P. Rajendiran","doi":"10.1166/jmihi.2021.3883","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) has changed the world into a more physically connected, ensuring higher order applications. As smart devices and patients surrounding are able to freely communicate with each other, more chances and conveniences are brought to us. However, as the information\n is kept inside these devices is revealed and distributed, security and privacy concerns call for an effective safeguarding process more than ever. Secured data transmission with higher voluminous data indulging with noisy instances, the computational cost and overhead incurred remains the\n major issues for IoT based health care system. The complexity of the inferred model may increase, and thereby the overall secured data transmission accuracy of the model may decrease. In this work, the above said issues are addressed via secure data transmission method, in order to minimize\n the computational cost and overhead incurred during transmission of large data and also improve the data transmission accuracy with minimum running time. The method is called as Delay-aware and Energy-efficient Laplace Angular Displacement (DE-LAD). The DE-LAD method involves three steps.\n They are data collection, data communication and data transmission. First data collection is performed via delayaware and energy-efficient model. Second data communication is said to be established using pairing-free Laplace Estimator, minimizing computational complexity involved during data\n collection. Finally, secured data transmission is achieved via Angular Displacement. Moreover, in WSN, the security of data being transmitted is calculated for IoT-based healthcare system. The simulation results of DE-LAD method provides enhanced performance in terms of security and complexity\n as compared to conventional methods.","PeriodicalId":393031,"journal":{"name":"J. Medical Imaging Health Informatics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laplace Angular Displaced Secure Data Transmission for Internet of Things Based Health Care Systems\",\"authors\":\"P. Srinivasan, A. Kannagi, P. Rajendiran\",\"doi\":\"10.1166/jmihi.2021.3883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Internet of Things (IoT) has changed the world into a more physically connected, ensuring higher order applications. As smart devices and patients surrounding are able to freely communicate with each other, more chances and conveniences are brought to us. However, as the information\\n is kept inside these devices is revealed and distributed, security and privacy concerns call for an effective safeguarding process more than ever. Secured data transmission with higher voluminous data indulging with noisy instances, the computational cost and overhead incurred remains the\\n major issues for IoT based health care system. The complexity of the inferred model may increase, and thereby the overall secured data transmission accuracy of the model may decrease. In this work, the above said issues are addressed via secure data transmission method, in order to minimize\\n the computational cost and overhead incurred during transmission of large data and also improve the data transmission accuracy with minimum running time. The method is called as Delay-aware and Energy-efficient Laplace Angular Displacement (DE-LAD). The DE-LAD method involves three steps.\\n They are data collection, data communication and data transmission. First data collection is performed via delayaware and energy-efficient model. Second data communication is said to be established using pairing-free Laplace Estimator, minimizing computational complexity involved during data\\n collection. Finally, secured data transmission is achieved via Angular Displacement. Moreover, in WSN, the security of data being transmitted is calculated for IoT-based healthcare system. The simulation results of DE-LAD method provides enhanced performance in terms of security and complexity\\n as compared to conventional methods.\",\"PeriodicalId\":393031,\"journal\":{\"name\":\"J. Medical Imaging Health Informatics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Medical Imaging Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jmihi.2021.3883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Medical Imaging Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2021.3883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laplace Angular Displaced Secure Data Transmission for Internet of Things Based Health Care Systems
The Internet of Things (IoT) has changed the world into a more physically connected, ensuring higher order applications. As smart devices and patients surrounding are able to freely communicate with each other, more chances and conveniences are brought to us. However, as the information
is kept inside these devices is revealed and distributed, security and privacy concerns call for an effective safeguarding process more than ever. Secured data transmission with higher voluminous data indulging with noisy instances, the computational cost and overhead incurred remains the
major issues for IoT based health care system. The complexity of the inferred model may increase, and thereby the overall secured data transmission accuracy of the model may decrease. In this work, the above said issues are addressed via secure data transmission method, in order to minimize
the computational cost and overhead incurred during transmission of large data and also improve the data transmission accuracy with minimum running time. The method is called as Delay-aware and Energy-efficient Laplace Angular Displacement (DE-LAD). The DE-LAD method involves three steps.
They are data collection, data communication and data transmission. First data collection is performed via delayaware and energy-efficient model. Second data communication is said to be established using pairing-free Laplace Estimator, minimizing computational complexity involved during data
collection. Finally, secured data transmission is achieved via Angular Displacement. Moreover, in WSN, the security of data being transmitted is calculated for IoT-based healthcare system. The simulation results of DE-LAD method provides enhanced performance in terms of security and complexity
as compared to conventional methods.