重组未知几何形状的薄工件

Geoffrey Oxholm, K. Nishino
{"title":"重组未知几何形状的薄工件","authors":"Geoffrey Oxholm, K. Nishino","doi":"10.2312/VAST/VAST11/049-056","DOIUrl":null,"url":null,"abstract":"We introduce a novel reassembly method for fragmented, thin objects that uses minimal user interaction. Unlike past methods, we do not make any restrictive assumptions about the geometry or texture of the object. To do so, we exploit the geometric and photometric similarity along and across the boundaries of matching fragments, and leverage user feedback to tackle the otherwise ill-posed problem. We begin by encoding the scale variability of each fragment's boundary contour in a multi-channel, 2D representation. Using this multi-channel boundary contour representation, we identify matching sub-contours via 2D partial image alignment. We then align the fragments by minimizing the distance between their adjoining regions while simultaneously ensuring geometric continuity across them. The configuration of the fragments as they are incrementally matched and aligned form a graph structure. By detecting cycles in this graph, we identify subsets of fragments with dependent alignments. We then minimize the error within the subsets to achieve a globally optimal alignment. Using ceramic pottery as the driving example, we demonstrate the accuracy and efficiency of our method on six real-world datasets.","PeriodicalId":168094,"journal":{"name":"IEEE Conference on Visual Analytics Science and Technology","volume":"7 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Reassembling Thin Artifacts of Unknown Geometry\",\"authors\":\"Geoffrey Oxholm, K. Nishino\",\"doi\":\"10.2312/VAST/VAST11/049-056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel reassembly method for fragmented, thin objects that uses minimal user interaction. Unlike past methods, we do not make any restrictive assumptions about the geometry or texture of the object. To do so, we exploit the geometric and photometric similarity along and across the boundaries of matching fragments, and leverage user feedback to tackle the otherwise ill-posed problem. We begin by encoding the scale variability of each fragment's boundary contour in a multi-channel, 2D representation. Using this multi-channel boundary contour representation, we identify matching sub-contours via 2D partial image alignment. We then align the fragments by minimizing the distance between their adjoining regions while simultaneously ensuring geometric continuity across them. The configuration of the fragments as they are incrementally matched and aligned form a graph structure. By detecting cycles in this graph, we identify subsets of fragments with dependent alignments. We then minimize the error within the subsets to achieve a globally optimal alignment. Using ceramic pottery as the driving example, we demonstrate the accuracy and efficiency of our method on six real-world datasets.\",\"PeriodicalId\":168094,\"journal\":{\"name\":\"IEEE Conference on Visual Analytics Science and Technology\",\"volume\":\"7 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Conference on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/VAST/VAST11/049-056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conference on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VAST/VAST11/049-056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们引入了一种新的重组方法,用于碎片化,薄对象,使用最小的用户交互。与过去的方法不同,我们没有对物体的几何形状或纹理做出任何限制性假设。为此,我们利用几何和光度相似性沿着和跨越匹配碎片的边界,并利用用户反馈来解决否则不适定的问题。我们首先在多通道二维表示中编码每个片段边界轮廓的尺度可变性。利用这种多通道边界轮廓表示,我们通过二维部分图像对齐来识别匹配的子轮廓。然后,我们通过最小化相邻区域之间的距离来对齐碎片,同时确保它们之间的几何连续性。片段的配置,因为它们是增量匹配和对齐形成一个图结构。通过检测此图中的循环,我们识别出具有依赖对齐的片段子集。然后,我们将子集内的误差最小化,以实现全局最优对齐。以陶瓷为例,在六个真实数据集上验证了该方法的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reassembling Thin Artifacts of Unknown Geometry
We introduce a novel reassembly method for fragmented, thin objects that uses minimal user interaction. Unlike past methods, we do not make any restrictive assumptions about the geometry or texture of the object. To do so, we exploit the geometric and photometric similarity along and across the boundaries of matching fragments, and leverage user feedback to tackle the otherwise ill-posed problem. We begin by encoding the scale variability of each fragment's boundary contour in a multi-channel, 2D representation. Using this multi-channel boundary contour representation, we identify matching sub-contours via 2D partial image alignment. We then align the fragments by minimizing the distance between their adjoining regions while simultaneously ensuring geometric continuity across them. The configuration of the fragments as they are incrementally matched and aligned form a graph structure. By detecting cycles in this graph, we identify subsets of fragments with dependent alignments. We then minimize the error within the subsets to achieve a globally optimal alignment. Using ceramic pottery as the driving example, we demonstrate the accuracy and efficiency of our method on six real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信