Johanna Björklund, Shay B. Cohen, F. Drewes, G. Satta
{"title":"自底向上的无排序树到图转换器翻译成语义图","authors":"Johanna Björklund, Shay B. Cohen, F. Drewes, G. Satta","doi":"10.18653/v1/W19-3104","DOIUrl":null,"url":null,"abstract":"We propose a formal model for translating unranked syntactic trees, such as dependency trees, into semantic graphs. These tree-to-graph transducers can serve as a formal basis of transition systems for semantic parsing which recently have been shown to perform very well, yet hitherto lack formalization. Our model features “extended” rules and an arc-factored normal form, comes with an efficient translation algorithm, and can be equipped with weights in a straightforward manner.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bottom-Up Unranked Tree-to-Graph Transducers for Translation into Semantic Graphs\",\"authors\":\"Johanna Björklund, Shay B. Cohen, F. Drewes, G. Satta\",\"doi\":\"10.18653/v1/W19-3104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a formal model for translating unranked syntactic trees, such as dependency trees, into semantic graphs. These tree-to-graph transducers can serve as a formal basis of transition systems for semantic parsing which recently have been shown to perform very well, yet hitherto lack formalization. Our model features “extended” rules and an arc-factored normal form, comes with an efficient translation algorithm, and can be equipped with weights in a straightforward manner.\",\"PeriodicalId\":286427,\"journal\":{\"name\":\"Finite-State Methods and Natural Language Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite-State Methods and Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-3104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bottom-Up Unranked Tree-to-Graph Transducers for Translation into Semantic Graphs
We propose a formal model for translating unranked syntactic trees, such as dependency trees, into semantic graphs. These tree-to-graph transducers can serve as a formal basis of transition systems for semantic parsing which recently have been shown to perform very well, yet hitherto lack formalization. Our model features “extended” rules and an arc-factored normal form, comes with an efficient translation algorithm, and can be equipped with weights in a straightforward manner.