{"title":"新模集的误差控制能力研究 \\({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\\)","authors":"S. Modiri, A. Movaghar, A. Barati","doi":"10.14419/JACST.V1I4.269","DOIUrl":null,"url":null,"abstract":"In this paper, a new 3-moduli set {2 2n+1 +2 n -1, 2 2n+1 -1, 2 n -1} with an efficient residue-to-binary converter using mixed radix conversion algorithm is presented. Moreover, by adding two redundant modulus {2 3n , 2 3n+1 -1}, a new moduli set in redundant residue number system is provided that can correct up to (2n+2) error bits. Simulation results of the error control algorithm's functionality with C++ programming language for 10'000 different error bits states show that the average percent of error detection capability using the proposed moduli set by setting n=2 is equal to 77.97%.","PeriodicalId":445404,"journal":{"name":"Journal of Advanced Computer Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of error control capability for the new moduli set \\\\({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\\\\)\",\"authors\":\"S. Modiri, A. Movaghar, A. Barati\",\"doi\":\"10.14419/JACST.V1I4.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new 3-moduli set {2 2n+1 +2 n -1, 2 2n+1 -1, 2 n -1} with an efficient residue-to-binary converter using mixed radix conversion algorithm is presented. Moreover, by adding two redundant modulus {2 3n , 2 3n+1 -1}, a new moduli set in redundant residue number system is provided that can correct up to (2n+2) error bits. Simulation results of the error control algorithm's functionality with C++ programming language for 10'000 different error bits states show that the average percent of error detection capability using the proposed moduli set by setting n=2 is equal to 77.97%.\",\"PeriodicalId\":445404,\"journal\":{\"name\":\"Journal of Advanced Computer Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computer Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/JACST.V1I4.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/JACST.V1I4.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
本文给出了一个新的3模集{2 2n+1 +2 n - 1,2 2n+1 - 1,2 n -1},它具有一个有效的残二数转换算法。此外,通过增加两个冗余模{23n, 23n +1 -1},在冗余余数系统中提供了一个新的模集,该模集最多可纠错(2n+2)位。用c++编程语言对10000种不同的错误位状态进行了误差控制算法的仿真结果表明,设置n=2所提出的模集的误差检测能力平均百分比为77.97%。
Study of error control capability for the new moduli set \({2^{2n+1}+2^{n}-1, 2^{2n+1}-1, 2^{n}-1, 2^{3n},2^{3n+1}-1}\)
In this paper, a new 3-moduli set {2 2n+1 +2 n -1, 2 2n+1 -1, 2 n -1} with an efficient residue-to-binary converter using mixed radix conversion algorithm is presented. Moreover, by adding two redundant modulus {2 3n , 2 3n+1 -1}, a new moduli set in redundant residue number system is provided that can correct up to (2n+2) error bits. Simulation results of the error control algorithm's functionality with C++ programming language for 10'000 different error bits states show that the average percent of error detection capability using the proposed moduli set by setting n=2 is equal to 77.97%.