通过模型分割实现大规模交互网络仿真

N. Vorst, Jason Liu
{"title":"通过模型分割实现大规模交互网络仿真","authors":"N. Vorst, Jason Liu","doi":"10.1109/PADS.2012.35","DOIUrl":null,"url":null,"abstract":"This paper presents the model splitting method for large-scale interactive network simulation, which addresses the separation of concerns between network researchers, who focus on developing complex network models and conducting large-scale network experiments, and simulator developers, who are concerned with developing efficient simulation engines to achieve the best performance on parallel platforms. Modeling splitting divides the system into an interactive model to support user interaction, and an execution model to facilitate parallel processing. We describe techniques to maintain consistency and real-time synchronization between the two models. We also provide solutions to reduce the memory complexity of large network models and to ensure data persistency and access efficiency for out-of-core processing.","PeriodicalId":299627,"journal":{"name":"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Realizing Large-Scale Interactive Network Simulation via Model Splitting\",\"authors\":\"N. Vorst, Jason Liu\",\"doi\":\"10.1109/PADS.2012.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the model splitting method for large-scale interactive network simulation, which addresses the separation of concerns between network researchers, who focus on developing complex network models and conducting large-scale network experiments, and simulator developers, who are concerned with developing efficient simulation engines to achieve the best performance on parallel platforms. Modeling splitting divides the system into an interactive model to support user interaction, and an execution model to facilitate parallel processing. We describe techniques to maintain consistency and real-time synchronization between the two models. We also provide solutions to reduce the memory complexity of large network models and to ensure data persistency and access efficiency for out-of-core processing.\",\"PeriodicalId\":299627,\"journal\":{\"name\":\"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PADS.2012.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PADS.2012.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种大规模交互网络仿真的模型分割方法,解决了网络研究人员和模拟器开发人员之间的关注点分离问题,前者专注于开发复杂的网络模型并进行大规模网络实验,而后者则专注于开发高效的仿真引擎以在并行平台上实现最佳性能。建模分割将系统划分为支持用户交互的交互模型和便于并行处理的执行模型。我们描述了在两个模型之间保持一致性和实时同步的技术。我们还提供解决方案,以降低大型网络模型的内存复杂性,并确保数据持久性和外核处理的访问效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizing Large-Scale Interactive Network Simulation via Model Splitting
This paper presents the model splitting method for large-scale interactive network simulation, which addresses the separation of concerns between network researchers, who focus on developing complex network models and conducting large-scale network experiments, and simulator developers, who are concerned with developing efficient simulation engines to achieve the best performance on parallel platforms. Modeling splitting divides the system into an interactive model to support user interaction, and an execution model to facilitate parallel processing. We describe techniques to maintain consistency and real-time synchronization between the two models. We also provide solutions to reduce the memory complexity of large network models and to ensure data persistency and access efficiency for out-of-core processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信