基于高斯混合模型的薄膜叠层结构纳米压痕声发射信号处理研究

Chen Liu, O. Nagler, F. Tremmel, M. Unterreitmeier, Jessica J. Frick, D. Senesky
{"title":"基于高斯混合模型的薄膜叠层结构纳米压痕声发射信号处理研究","authors":"Chen Liu, O. Nagler, F. Tremmel, M. Unterreitmeier, Jessica J. Frick, D. Senesky","doi":"10.12783/shm2021/36364","DOIUrl":null,"url":null,"abstract":"This investigation utilizes a material testing system that integrates acoustic emission (AE) testing with a nanoindentation system for crack generation and detection in Al-Cu top thin-film stack structures. The suitability of using the AE method was verified with scanning electron microscope (SEM) images of indent cross-sections. In order to cluster the AE signals based on a different physical meaning, a signal processing approach based on the Gaussian mixture model (GMM) clustering algorithm was applied. Principal component analysis (PCA) and autoencoder feature extraction methods were used to reduce the dimension of the signal. This signal processing approach has the promising ability to distinguish AE events associated with crack formation and metal layer plastic deformation. This integrated test system and signal processing approach provide a high-resolution mechanical testing platform for studying and enabling automatic, non-destructive crack detection in wafer probing.","PeriodicalId":180083,"journal":{"name":"Proceedings of the 13th International Workshop on Structural Health Monitoring","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACOUSTIC EMISSION SIGNAL PROCESSING STUDY OF NANOINDENTATION ON THIN FILM STACK STRUCTURES USING GAUSSIAN MIXTURE MODEL\",\"authors\":\"Chen Liu, O. Nagler, F. Tremmel, M. Unterreitmeier, Jessica J. Frick, D. Senesky\",\"doi\":\"10.12783/shm2021/36364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation utilizes a material testing system that integrates acoustic emission (AE) testing with a nanoindentation system for crack generation and detection in Al-Cu top thin-film stack structures. The suitability of using the AE method was verified with scanning electron microscope (SEM) images of indent cross-sections. In order to cluster the AE signals based on a different physical meaning, a signal processing approach based on the Gaussian mixture model (GMM) clustering algorithm was applied. Principal component analysis (PCA) and autoencoder feature extraction methods were used to reduce the dimension of the signal. This signal processing approach has the promising ability to distinguish AE events associated with crack formation and metal layer plastic deformation. This integrated test system and signal processing approach provide a high-resolution mechanical testing platform for studying and enabling automatic, non-destructive crack detection in wafer probing.\",\"PeriodicalId\":180083,\"journal\":{\"name\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Workshop on Structural Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12783/shm2021/36364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Structural Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12783/shm2021/36364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用了一种材料测试系统,该系统将声发射(AE)测试与纳米压痕系统相结合,用于Al-Cu顶部薄膜堆叠结构的裂纹产生和检测。用压痕截面的扫描电镜(SEM)图像验证了声发射法的适用性。为了对不同物理意义的声发射信号进行聚类,采用了基于高斯混合模型(GMM)聚类算法的信号处理方法。采用主成分分析(PCA)和自编码器特征提取方法对信号进行降维处理。这种信号处理方法在识别与裂纹形成和金属层塑性变形相关的声发射事件方面具有良好的能力。该集成测试系统和信号处理方法为研究和实现晶圆探测中的自动、无损裂纹检测提供了一个高分辨率的机械测试平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ACOUSTIC EMISSION SIGNAL PROCESSING STUDY OF NANOINDENTATION ON THIN FILM STACK STRUCTURES USING GAUSSIAN MIXTURE MODEL
This investigation utilizes a material testing system that integrates acoustic emission (AE) testing with a nanoindentation system for crack generation and detection in Al-Cu top thin-film stack structures. The suitability of using the AE method was verified with scanning electron microscope (SEM) images of indent cross-sections. In order to cluster the AE signals based on a different physical meaning, a signal processing approach based on the Gaussian mixture model (GMM) clustering algorithm was applied. Principal component analysis (PCA) and autoencoder feature extraction methods were used to reduce the dimension of the signal. This signal processing approach has the promising ability to distinguish AE events associated with crack formation and metal layer plastic deformation. This integrated test system and signal processing approach provide a high-resolution mechanical testing platform for studying and enabling automatic, non-destructive crack detection in wafer probing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信