Liubomir Chiriac, Natalia Bobeică, Natalia Lupashco, Dorin Pavel
{"title":"具有多恒等式和中间拓扑左环的cm -群拟","authors":"Liubomir Chiriac, Natalia Bobeică, Natalia Lupashco, Dorin Pavel","doi":"10.36120/2587-3644.v12i2.120-131","DOIUrl":null,"url":null,"abstract":"This paper studies some properties of CM-groupoids with multiple identities and medial topological left loops. The conditions for a CM-groupoid to become a CM-quasigroup were found. A new method of constructing non-associative medial topological quasigroups with left identity is given. Various examples of quasigroups with multiple identities have been constructed","PeriodicalId":340784,"journal":{"name":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On CM-groupoids with multiple identities and medial topological left loops\",\"authors\":\"Liubomir Chiriac, Natalia Bobeică, Natalia Lupashco, Dorin Pavel\",\"doi\":\"10.36120/2587-3644.v12i2.120-131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies some properties of CM-groupoids with multiple identities and medial topological left loops. The conditions for a CM-groupoid to become a CM-quasigroup were found. A new method of constructing non-associative medial topological quasigroups with left identity is given. Various examples of quasigroups with multiple identities have been constructed\",\"PeriodicalId\":340784,\"journal\":{\"name\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta et commentationes: Ştiinţe Exacte şi ale Naturii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36120/2587-3644.v12i2.120-131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta et commentationes: Ştiinţe Exacte şi ale Naturii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36120/2587-3644.v12i2.120-131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On CM-groupoids with multiple identities and medial topological left loops
This paper studies some properties of CM-groupoids with multiple identities and medial topological left loops. The conditions for a CM-groupoid to become a CM-quasigroup were found. A new method of constructing non-associative medial topological quasigroups with left identity is given. Various examples of quasigroups with multiple identities have been constructed