Nan Jiang, Jin Cao, Yu Jin, Erran L. Li, Zhi-Li Zhang
{"title":"通过DNS故障图分析识别可疑活动","authors":"Nan Jiang, Jin Cao, Yu Jin, Erran L. Li, Zhi-Li Zhang","doi":"10.1109/ICNP.2010.5762763","DOIUrl":null,"url":null,"abstract":"As a key approach to securing large networks, existing anomaly detection techniques focus primarily on network traffic data. However, the sheer volume of such data often renders detailed analysis very expensive and reduces the effectiveness of these tools. In this paper, we propose a light-weight anomaly detection approach based on unproductive DNS traffic, namely, the failed DNS queries, with a novel tool - DNS failure graphs. A DNS failure graph captures the interactions between hosts and failed domain names. We apply a graph decomposition algorithm based on the tri-nonnegative matrix factorization technique to iteratively extract coherent co-clusters (dense subgraphs) from DNS failure graphs. By analyzing the co-clusters in the daily DNS failure graphs from a 3-month DNS trace captured at a large campus network, we find these co-clusters represent a variety of anomalous activities, e.g., spamming, trojans, bots, etc.. In addition, these activities often exhibit distinguishable subgraph structures. By exploring the temporal properties of the co-clusters, we show our method can identify new anomalies that likely correspond to unreported domain-flux bots.","PeriodicalId":344208,"journal":{"name":"The 18th IEEE International Conference on Network Protocols","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Identifying suspicious activities through DNS failure graph analysis\",\"authors\":\"Nan Jiang, Jin Cao, Yu Jin, Erran L. Li, Zhi-Li Zhang\",\"doi\":\"10.1109/ICNP.2010.5762763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a key approach to securing large networks, existing anomaly detection techniques focus primarily on network traffic data. However, the sheer volume of such data often renders detailed analysis very expensive and reduces the effectiveness of these tools. In this paper, we propose a light-weight anomaly detection approach based on unproductive DNS traffic, namely, the failed DNS queries, with a novel tool - DNS failure graphs. A DNS failure graph captures the interactions between hosts and failed domain names. We apply a graph decomposition algorithm based on the tri-nonnegative matrix factorization technique to iteratively extract coherent co-clusters (dense subgraphs) from DNS failure graphs. By analyzing the co-clusters in the daily DNS failure graphs from a 3-month DNS trace captured at a large campus network, we find these co-clusters represent a variety of anomalous activities, e.g., spamming, trojans, bots, etc.. In addition, these activities often exhibit distinguishable subgraph structures. By exploring the temporal properties of the co-clusters, we show our method can identify new anomalies that likely correspond to unreported domain-flux bots.\",\"PeriodicalId\":344208,\"journal\":{\"name\":\"The 18th IEEE International Conference on Network Protocols\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Conference on Network Protocols\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP.2010.5762763\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Conference on Network Protocols","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2010.5762763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying suspicious activities through DNS failure graph analysis
As a key approach to securing large networks, existing anomaly detection techniques focus primarily on network traffic data. However, the sheer volume of such data often renders detailed analysis very expensive and reduces the effectiveness of these tools. In this paper, we propose a light-weight anomaly detection approach based on unproductive DNS traffic, namely, the failed DNS queries, with a novel tool - DNS failure graphs. A DNS failure graph captures the interactions between hosts and failed domain names. We apply a graph decomposition algorithm based on the tri-nonnegative matrix factorization technique to iteratively extract coherent co-clusters (dense subgraphs) from DNS failure graphs. By analyzing the co-clusters in the daily DNS failure graphs from a 3-month DNS trace captured at a large campus network, we find these co-clusters represent a variety of anomalous activities, e.g., spamming, trojans, bots, etc.. In addition, these activities often exhibit distinguishable subgraph structures. By exploring the temporal properties of the co-clusters, we show our method can identify new anomalies that likely correspond to unreported domain-flux bots.