Kento Furuhashi, J. Suzuki, Jonathan S. Mitzman, T. Nakano, Yutaka Okaie, Hiroaki Fukuda
{"title":"SW-ARQ对扩散序列分子通信延迟和可靠性的影响","authors":"Kento Furuhashi, J. Suzuki, Jonathan S. Mitzman, T. Nakano, Yutaka Okaie, Hiroaki Fukuda","doi":"10.1109/SECONW.2018.8396350","DOIUrl":null,"url":null,"abstract":"This paper studies a feedback-based communication protocol for bio-nanomachines to reliably transmit and receive a series of molecular messages through diffusive transports in a particular order. Based on the Stop-and- Wait Automatic Repeat Request (SW-ARQ) mechanism, the proposed protocol leverages redundant molecule transmissions, molecule delivery acknowledgement and timeout-based retransmissions to enhance the latency and reliability of in-sequence molecular communication. Simulation results demonstrate that the protocol substantially improves latency, jitter and transmission failure rate. They also illustrate how environmental and protocol parameters impact those communication performance metrics.","PeriodicalId":346249,"journal":{"name":"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of SW-ARQ on the Latency and Reliability of Diffusive, In-Sequence Molecular Communication\",\"authors\":\"Kento Furuhashi, J. Suzuki, Jonathan S. Mitzman, T. Nakano, Yutaka Okaie, Hiroaki Fukuda\",\"doi\":\"10.1109/SECONW.2018.8396350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies a feedback-based communication protocol for bio-nanomachines to reliably transmit and receive a series of molecular messages through diffusive transports in a particular order. Based on the Stop-and- Wait Automatic Repeat Request (SW-ARQ) mechanism, the proposed protocol leverages redundant molecule transmissions, molecule delivery acknowledgement and timeout-based retransmissions to enhance the latency and reliability of in-sequence molecular communication. Simulation results demonstrate that the protocol substantially improves latency, jitter and transmission failure rate. They also illustrate how environmental and protocol parameters impact those communication performance metrics.\",\"PeriodicalId\":346249,\"journal\":{\"name\":\"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECONW.2018.8396350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Sensing, Communication and Networking (SECON Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECONW.2018.8396350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Impacts of SW-ARQ on the Latency and Reliability of Diffusive, In-Sequence Molecular Communication
This paper studies a feedback-based communication protocol for bio-nanomachines to reliably transmit and receive a series of molecular messages through diffusive transports in a particular order. Based on the Stop-and- Wait Automatic Repeat Request (SW-ARQ) mechanism, the proposed protocol leverages redundant molecule transmissions, molecule delivery acknowledgement and timeout-based retransmissions to enhance the latency and reliability of in-sequence molecular communication. Simulation results demonstrate that the protocol substantially improves latency, jitter and transmission failure rate. They also illustrate how environmental and protocol parameters impact those communication performance metrics.