随机球形线性预言机的逻辑集成

Leif E. Peterson, M. Coleman
{"title":"随机球形线性预言机的逻辑集成","authors":"Leif E. Peterson, M. Coleman","doi":"10.1109/ICMLA.2007.104","DOIUrl":null,"url":null,"abstract":"A random spherical linear oracle (RSLO) ensemble classifier for DNA microarray gene expression data is proposed. The oracle assigns different training(testing) samples to 2 sub- classifiers of the same type using hyperplane splits in order to increase the diversity of voting results since errors are not shared across sub-classifiers. Eleven classifiers were evaluated for performance as the base classifier including k nearest neighbor (kNN), naive Bayes classifier (NBC), linear discriminant analysis (LDA), learning vector quantization (LVQ1), polytomous logistic regression (PLOG), artificial neural networks (ANN), constricted particle swarm optimization (CPSO), kernel regression (KREG), radial basis function networks (RBFN), gradient descent support vector machines (SVMGD), and least squares support vector machines (SVMLS). Logistic ensembles (PLOG) resulted in the best performance when used as a base classifier for RSLO. Random hyperplane splits used in RSLO resulted in degeneration of performance at the greatest levels of CV-fold and iteration number when compared with hyperplane splits in principal direction linear oracle (PDLO), which increased with increasing CV-fold and iteration number.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Logistic Ensembles for Random Spherical Linear Oracles\",\"authors\":\"Leif E. Peterson, M. Coleman\",\"doi\":\"10.1109/ICMLA.2007.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A random spherical linear oracle (RSLO) ensemble classifier for DNA microarray gene expression data is proposed. The oracle assigns different training(testing) samples to 2 sub- classifiers of the same type using hyperplane splits in order to increase the diversity of voting results since errors are not shared across sub-classifiers. Eleven classifiers were evaluated for performance as the base classifier including k nearest neighbor (kNN), naive Bayes classifier (NBC), linear discriminant analysis (LDA), learning vector quantization (LVQ1), polytomous logistic regression (PLOG), artificial neural networks (ANN), constricted particle swarm optimization (CPSO), kernel regression (KREG), radial basis function networks (RBFN), gradient descent support vector machines (SVMGD), and least squares support vector machines (SVMLS). Logistic ensembles (PLOG) resulted in the best performance when used as a base classifier for RSLO. Random hyperplane splits used in RSLO resulted in degeneration of performance at the greatest levels of CV-fold and iteration number when compared with hyperplane splits in principal direction linear oracle (PDLO), which increased with increasing CV-fold and iteration number.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种用于DNA微阵列基因表达数据的随机球形线性序列(RSLO)集成分类器。oracle使用超平面分割将不同的训练(测试)样本分配给2个相同类型的子分类器,以增加投票结果的多样性,因为错误不会在子分类器之间共享。以k近邻(kNN)、朴素贝叶斯分类器(NBC)、线性判别分析(LDA)、学习向量量化(LVQ1)、多元逻辑回归(PLOG)、人工神经网络(ANN)、收缩粒子群优化(CPSO)、核回归(KREG)、径向基函数网络(RBFN)、梯度下降支持向量机(SVMGD)和最小二乘支持向量机(SVMLS)等11种分类器作为基分类器进行性能评价。逻辑集成(PLOG)作为RSLO的基本分类器时,具有最佳的性能。RSLO中使用的随机超平面分割与主方向线性预测(PDLO)的超平面分割相比,在最大的CV-fold和迭代次数水平下,性能下降,且随CV-fold和迭代次数的增加而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logistic Ensembles for Random Spherical Linear Oracles
A random spherical linear oracle (RSLO) ensemble classifier for DNA microarray gene expression data is proposed. The oracle assigns different training(testing) samples to 2 sub- classifiers of the same type using hyperplane splits in order to increase the diversity of voting results since errors are not shared across sub-classifiers. Eleven classifiers were evaluated for performance as the base classifier including k nearest neighbor (kNN), naive Bayes classifier (NBC), linear discriminant analysis (LDA), learning vector quantization (LVQ1), polytomous logistic regression (PLOG), artificial neural networks (ANN), constricted particle swarm optimization (CPSO), kernel regression (KREG), radial basis function networks (RBFN), gradient descent support vector machines (SVMGD), and least squares support vector machines (SVMLS). Logistic ensembles (PLOG) resulted in the best performance when used as a base classifier for RSLO. Random hyperplane splits used in RSLO resulted in degeneration of performance at the greatest levels of CV-fold and iteration number when compared with hyperplane splits in principal direction linear oracle (PDLO), which increased with increasing CV-fold and iteration number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信