Muhao Chen, Qi Zhao, Pengyuan Du, C. Zaniolo, M. Gerla
{"title":"基于上下文感知协同过滤的需求驱动缓存分配","authors":"Muhao Chen, Qi Zhao, Pengyuan Du, C. Zaniolo, M. Gerla","doi":"10.1145/3209582.3225198","DOIUrl":null,"url":null,"abstract":"Many recent advances of network caching focus on i) more effectively modeling the preferences of a regional user group to different web contents, and ii) reducing the cost of content delivery by storing the most popular contents in regional caches. However, the context under which the users interact with the network system usually causes tremendous variations in a user group's preferences on the contents. To effectively leverage such contextual information for more efficient network caching, we propose a novel mechanism to incorporate context-aware collaborative filtering into demand-driven caching. By differentiating the characterization of user interests based on a priori contexts, our approach seeks to enhance the cache performance with a more dynamic and fine-grained cache allocation process. In particular, our approach is general and adapts to various types of context information. Our evaluation shows that this new approach significantly outperforms previous non-demand-driven caching strategies by offering much higher cached content rate, especially when utilizing the contextual information.","PeriodicalId":375932,"journal":{"name":"Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Demand-driven Cache Allocation Based on Context-aware Collaborative Filtering\",\"authors\":\"Muhao Chen, Qi Zhao, Pengyuan Du, C. Zaniolo, M. Gerla\",\"doi\":\"10.1145/3209582.3225198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many recent advances of network caching focus on i) more effectively modeling the preferences of a regional user group to different web contents, and ii) reducing the cost of content delivery by storing the most popular contents in regional caches. However, the context under which the users interact with the network system usually causes tremendous variations in a user group's preferences on the contents. To effectively leverage such contextual information for more efficient network caching, we propose a novel mechanism to incorporate context-aware collaborative filtering into demand-driven caching. By differentiating the characterization of user interests based on a priori contexts, our approach seeks to enhance the cache performance with a more dynamic and fine-grained cache allocation process. In particular, our approach is general and adapts to various types of context information. Our evaluation shows that this new approach significantly outperforms previous non-demand-driven caching strategies by offering much higher cached content rate, especially when utilizing the contextual information.\",\"PeriodicalId\":375932,\"journal\":{\"name\":\"Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3209582.3225198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3209582.3225198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demand-driven Cache Allocation Based on Context-aware Collaborative Filtering
Many recent advances of network caching focus on i) more effectively modeling the preferences of a regional user group to different web contents, and ii) reducing the cost of content delivery by storing the most popular contents in regional caches. However, the context under which the users interact with the network system usually causes tremendous variations in a user group's preferences on the contents. To effectively leverage such contextual information for more efficient network caching, we propose a novel mechanism to incorporate context-aware collaborative filtering into demand-driven caching. By differentiating the characterization of user interests based on a priori contexts, our approach seeks to enhance the cache performance with a more dynamic and fine-grained cache allocation process. In particular, our approach is general and adapts to various types of context information. Our evaluation shows that this new approach significantly outperforms previous non-demand-driven caching strategies by offering much higher cached content rate, especially when utilizing the contextual information.