论归纳问题的可解性:一个认知拓扑的研究

A. Baltag, Nina Gierasimczuk, S. Smets
{"title":"论归纳问题的可解性:一个认知拓扑的研究","authors":"A. Baltag, Nina Gierasimczuk, S. Smets","doi":"10.4204/EPTCS.215.7","DOIUrl":null,"url":null,"abstract":"We investigate the issues of inductive problem-solving and learning by doxastic agents. We provide topological characterizations of solvability and learnability, and we use them to prove that AGM-style belief revision is \"universal\", i.e., that every solvable problem is solvable by AGM conditioning.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"On the Solvability of Inductive Problems: A Study in Epistemic Topology\",\"authors\":\"A. Baltag, Nina Gierasimczuk, S. Smets\",\"doi\":\"10.4204/EPTCS.215.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the issues of inductive problem-solving and learning by doxastic agents. We provide topological characterizations of solvability and learnability, and we use them to prove that AGM-style belief revision is \\\"universal\\\", i.e., that every solvable problem is solvable by AGM conditioning.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.215.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.215.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们研究归纳问题的解决和学习的对立代理的问题。我们给出了可解性和可学习性的拓扑特征,并利用它们证明了AGM风格的信念修正是“全称的”,即每一个可解的问题都是AGM条件可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Solvability of Inductive Problems: A Study in Epistemic Topology
We investigate the issues of inductive problem-solving and learning by doxastic agents. We provide topological characterizations of solvability and learnability, and we use them to prove that AGM-style belief revision is "universal", i.e., that every solvable problem is solvable by AGM conditioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信