基于分层样例的语音稀疏模型,并在ASR中的应用

J. Gemmeke, H. V. hamme
{"title":"基于分层样例的语音稀疏模型,并在ASR中的应用","authors":"J. Gemmeke, H. V. hamme","doi":"10.1109/ASRU.2011.6163913","DOIUrl":null,"url":null,"abstract":"We propose a hierarchical exemplar-based model of speech, as well as a new algorithm, to efficiently find sparse linear combinations of exemplars in dictionaries containing hundreds of thousands exemplars. We use a variant of hierarchical agglomerative clustering to find a hierarchy connecting all exemplars, so that each exemplar is a parent to two child nodes. We use a modified version of a multiplicative-updates based algorithm to find sparse representations starting from a small active set of exemplars from the dictionary. Namely, on each iteration we replace exemplars that have an increasing weight by their child-nodes. We illustrate the properties of the proposed method by investigating computational effort, accuracy of the eventual sparse representation and speech recognition accuracy on a digit recognition task.","PeriodicalId":338241,"journal":{"name":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An hierarchical exemplar-based sparse model of speech, with an application to ASR\",\"authors\":\"J. Gemmeke, H. V. hamme\",\"doi\":\"10.1109/ASRU.2011.6163913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a hierarchical exemplar-based model of speech, as well as a new algorithm, to efficiently find sparse linear combinations of exemplars in dictionaries containing hundreds of thousands exemplars. We use a variant of hierarchical agglomerative clustering to find a hierarchy connecting all exemplars, so that each exemplar is a parent to two child nodes. We use a modified version of a multiplicative-updates based algorithm to find sparse representations starting from a small active set of exemplars from the dictionary. Namely, on each iteration we replace exemplars that have an increasing weight by their child-nodes. We illustrate the properties of the proposed method by investigating computational effort, accuracy of the eventual sparse representation and speech recognition accuracy on a digit recognition task.\",\"PeriodicalId\":338241,\"journal\":{\"name\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2011.6163913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2011.6163913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一种基于分层样例的语音模型,以及一种新的算法,以有效地在包含数十万样例的字典中找到稀疏线性组合的样例。我们使用层次聚合聚类的一种变体来找到连接所有示例的层次结构,以便每个示例是两个子节点的父节点。我们使用基于乘法更新算法的改进版本,从字典中的小活动样本集开始查找稀疏表示。也就是说,在每次迭代中,我们用子节点替换权重增加的示例。我们通过研究数字识别任务上的计算量、最终稀疏表示的准确性和语音识别精度来说明所提出方法的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An hierarchical exemplar-based sparse model of speech, with an application to ASR
We propose a hierarchical exemplar-based model of speech, as well as a new algorithm, to efficiently find sparse linear combinations of exemplars in dictionaries containing hundreds of thousands exemplars. We use a variant of hierarchical agglomerative clustering to find a hierarchy connecting all exemplars, so that each exemplar is a parent to two child nodes. We use a modified version of a multiplicative-updates based algorithm to find sparse representations starting from a small active set of exemplars from the dictionary. Namely, on each iteration we replace exemplars that have an increasing weight by their child-nodes. We illustrate the properties of the proposed method by investigating computational effort, accuracy of the eventual sparse representation and speech recognition accuracy on a digit recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信