Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, Guandong Xu
{"title":"基于局部搜索的复杂加权网络主干提取方法","authors":"Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, Guandong Xu","doi":"10.1109/ASONAM.2014.6921564","DOIUrl":null,"url":null,"abstract":"The backbone is the natural abstraction of a complex network, which can help people to understand it in a more simplified form. Backbone extraction becomes more challenging as many networks are evolving into large scale and the weight distributions are spanning several orders of magnitude. Traditional filter-based methods tend to include many outliers into the backbone. What is more, they often suffer from the computational inefficiency-the exhaustive search of all nodes or edges is often prohibitively expensive. In this work, we propose a Local Search based Backbone Extraction Heuristic (LS-BEH) to find the backbone in a complex weighted network. First, a strict filtering rule is carefully designed to determine edges to be preserved or discarded. Second, we present a local search model to examine part of edges in an iterative way. Experimental results on two real-life networks demonstrate the advantage of LS-BEH over the classic disparity filter method by either effectiveness or efficiency validity.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A backbone extraction method with Local Search for complex weighted networks\",\"authors\":\"Zhan Bu, Zhiang Wu, Liqiang Qian, Jie Cao, Guandong Xu\",\"doi\":\"10.1109/ASONAM.2014.6921564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The backbone is the natural abstraction of a complex network, which can help people to understand it in a more simplified form. Backbone extraction becomes more challenging as many networks are evolving into large scale and the weight distributions are spanning several orders of magnitude. Traditional filter-based methods tend to include many outliers into the backbone. What is more, they often suffer from the computational inefficiency-the exhaustive search of all nodes or edges is often prohibitively expensive. In this work, we propose a Local Search based Backbone Extraction Heuristic (LS-BEH) to find the backbone in a complex weighted network. First, a strict filtering rule is carefully designed to determine edges to be preserved or discarded. Second, we present a local search model to examine part of edges in an iterative way. Experimental results on two real-life networks demonstrate the advantage of LS-BEH over the classic disparity filter method by either effectiveness or efficiency validity.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A backbone extraction method with Local Search for complex weighted networks
The backbone is the natural abstraction of a complex network, which can help people to understand it in a more simplified form. Backbone extraction becomes more challenging as many networks are evolving into large scale and the weight distributions are spanning several orders of magnitude. Traditional filter-based methods tend to include many outliers into the backbone. What is more, they often suffer from the computational inefficiency-the exhaustive search of all nodes or edges is often prohibitively expensive. In this work, we propose a Local Search based Backbone Extraction Heuristic (LS-BEH) to find the backbone in a complex weighted network. First, a strict filtering rule is carefully designed to determine edges to be preserved or discarded. Second, we present a local search model to examine part of edges in an iterative way. Experimental results on two real-life networks demonstrate the advantage of LS-BEH over the classic disparity filter method by either effectiveness or efficiency validity.