人体运动预测的数据增强

Takahiro Maeda, N. Ukita
{"title":"人体运动预测的数据增强","authors":"Takahiro Maeda, N. Ukita","doi":"10.23919/MVA51890.2021.9511368","DOIUrl":null,"url":null,"abstract":"Human motion prediction is seldom deployed to real-world tasks due to difficulty in collecting a huge amount of motion data. We propose two motion data augmentation approaches using Variational AutoEn-coder (VAE) and Inverse Kinematics (IK). Our VAE-based generative model with adversarial training and sampling near samples generates various motions even with insufficient original motion data. Our IK-based augmentation scheme allows us to semi-automatically generate a variety of motions. Furthermore, we correct unrealistic artifacts in the augmented motions. As a result, our method outperforms previous noise-based motion augmentation methods.","PeriodicalId":312481,"journal":{"name":"2021 17th International Conference on Machine Vision and Applications (MVA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Augmentation for Human Motion Prediction\",\"authors\":\"Takahiro Maeda, N. Ukita\",\"doi\":\"10.23919/MVA51890.2021.9511368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human motion prediction is seldom deployed to real-world tasks due to difficulty in collecting a huge amount of motion data. We propose two motion data augmentation approaches using Variational AutoEn-coder (VAE) and Inverse Kinematics (IK). Our VAE-based generative model with adversarial training and sampling near samples generates various motions even with insufficient original motion data. Our IK-based augmentation scheme allows us to semi-automatically generate a variety of motions. Furthermore, we correct unrealistic artifacts in the augmented motions. As a result, our method outperforms previous noise-based motion augmentation methods.\",\"PeriodicalId\":312481,\"journal\":{\"name\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th International Conference on Machine Vision and Applications (MVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MVA51890.2021.9511368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th International Conference on Machine Vision and Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA51890.2021.9511368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于难以收集大量的运动数据,人体运动预测很少应用于实际任务。我们提出了两种使用变分自动编码(VAE)和逆运动学(IK)的运动数据增强方法。我们的基于vae的生成模型采用对抗训练和样本附近采样,即使原始运动数据不足也能生成各种运动。我们基于ik的增强方案允许我们半自动地生成各种运动。此外,我们还纠正了增强运动中不真实的伪影。因此,我们的方法优于以前基于噪声的运动增强方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Augmentation for Human Motion Prediction
Human motion prediction is seldom deployed to real-world tasks due to difficulty in collecting a huge amount of motion data. We propose two motion data augmentation approaches using Variational AutoEn-coder (VAE) and Inverse Kinematics (IK). Our VAE-based generative model with adversarial training and sampling near samples generates various motions even with insufficient original motion data. Our IK-based augmentation scheme allows us to semi-automatically generate a variety of motions. Furthermore, we correct unrealistic artifacts in the augmented motions. As a result, our method outperforms previous noise-based motion augmentation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信