在模拟赛车中学习超车和拦车技巧

Han-Hsien Huang, Tsaipei Wang
{"title":"在模拟赛车中学习超车和拦车技巧","authors":"Han-Hsien Huang, Tsaipei Wang","doi":"10.1109/CIG.2015.7317916","DOIUrl":null,"url":null,"abstract":"In this paper we describe the analysis of using Q-learning to acquire overtaking and blocking skills in simulated car racing games. Overtaking and blocking are more complicated racing skills compared to driving alone, and past work on this topic has only touched overtaking in very limited scenarios. Our work demonstrates that a driving AI agent can learn overtaking and blocking skills via machine learning, and the acquired skills are applicable when facing different opponent types and track characteristics, even on actual built-in tracks in TORCS.","PeriodicalId":244862,"journal":{"name":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Learning overtaking and blocking skills in simulated car racing\",\"authors\":\"Han-Hsien Huang, Tsaipei Wang\",\"doi\":\"10.1109/CIG.2015.7317916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe the analysis of using Q-learning to acquire overtaking and blocking skills in simulated car racing games. Overtaking and blocking are more complicated racing skills compared to driving alone, and past work on this topic has only touched overtaking in very limited scenarios. Our work demonstrates that a driving AI agent can learn overtaking and blocking skills via machine learning, and the acquired skills are applicable when facing different opponent types and track characteristics, even on actual built-in tracks in TORCS.\",\"PeriodicalId\":244862,\"journal\":{\"name\":\"2015 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2015.7317916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2015.7317916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文描述了在模拟赛车游戏中利用q学习获得超车和拦车技能的分析。与单独驾驶相比,超车和拦车是更为复杂的赛车技巧,过去关于这一主题的研究只在非常有限的情况下涉及到超车。我们的工作表明,驾驶AI智能体可以通过机器学习学习超车和拦截技能,并且所获得的技能适用于面对不同类型的对手和赛道特征,甚至是在TORCS的实际内置赛道上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning overtaking and blocking skills in simulated car racing
In this paper we describe the analysis of using Q-learning to acquire overtaking and blocking skills in simulated car racing games. Overtaking and blocking are more complicated racing skills compared to driving alone, and past work on this topic has only touched overtaking in very limited scenarios. Our work demonstrates that a driving AI agent can learn overtaking and blocking skills via machine learning, and the acquired skills are applicable when facing different opponent types and track characteristics, even on actual built-in tracks in TORCS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信