增强数据即服务生态系统

Michael Smit, Mark Shtern, B. Simmons, Marin Litoiu
{"title":"增强数据即服务生态系统","authors":"Michael Smit, Mark Shtern, B. Simmons, Marin Litoiu","doi":"10.1109/SERVICES.2013.53","DOIUrl":null,"url":null,"abstract":"The sharing of large and interesting Big Data in cloud environments can be achieved using data-as-a-service, where a provider offers data to interested users. In enhanced data-as-a-service, the data provider also supplies compute infrastructure, allowing users to run analytics tasks local to the data and reducing the (expensive and slow) transmission of data over networks. This paper describes a services-based ecosystem that allows providers to precisely share portions of their data with users, using a model where users submit MapReduce jobs that run on the provider's Hadoop infrastructure. Providers are given mechanisms to filter, segment, and/or transform data before it reaches the user's task. The ecosystem also allows for intermediaries who offer value-added filtrations, segmentations, or transformations of the data (for example, pre-filtering a dataset to only include high-income users). We describe the RESTful services required to enable this ecosystem, introduce a prototype to demonstrate the concept, and present experiments using this ecosystem to both provide and analyze different segments of a single large data set.","PeriodicalId":169370,"journal":{"name":"2013 IEEE Ninth World Congress on Services","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Enabling an Enhanced Data-as-a-Service Ecosystem\",\"authors\":\"Michael Smit, Mark Shtern, B. Simmons, Marin Litoiu\",\"doi\":\"10.1109/SERVICES.2013.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sharing of large and interesting Big Data in cloud environments can be achieved using data-as-a-service, where a provider offers data to interested users. In enhanced data-as-a-service, the data provider also supplies compute infrastructure, allowing users to run analytics tasks local to the data and reducing the (expensive and slow) transmission of data over networks. This paper describes a services-based ecosystem that allows providers to precisely share portions of their data with users, using a model where users submit MapReduce jobs that run on the provider's Hadoop infrastructure. Providers are given mechanisms to filter, segment, and/or transform data before it reaches the user's task. The ecosystem also allows for intermediaries who offer value-added filtrations, segmentations, or transformations of the data (for example, pre-filtering a dataset to only include high-income users). We describe the RESTful services required to enable this ecosystem, introduce a prototype to demonstrate the concept, and present experiments using this ecosystem to both provide and analyze different segments of a single large data set.\",\"PeriodicalId\":169370,\"journal\":{\"name\":\"2013 IEEE Ninth World Congress on Services\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Ninth World Congress on Services\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SERVICES.2013.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Ninth World Congress on Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SERVICES.2013.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过使用数据即服务(Data -as-a-service),可以在云环境中共享大量有趣的大数据,即提供商向感兴趣的用户提供数据。在增强的数据即服务中,数据提供者还提供计算基础设施,允许用户在数据本地运行分析任务,并减少网络上的数据传输(昂贵且缓慢)。本文描述了一个基于服务的生态系统,它允许提供商与用户精确地共享部分数据,使用用户提交运行在提供商的Hadoop基础设施上的MapReduce作业的模型。在数据到达用户的任务之前,提供程序被赋予过滤、分段和/或转换数据的机制。生态系统还允许中介提供增值过滤、细分或数据转换(例如,预过滤数据集,仅包括高收入用户)。我们描述了启用这个生态系统所需的RESTful服务,介绍了一个原型来演示这个概念,并介绍了使用这个生态系统来提供和分析单个大型数据集的不同部分的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling an Enhanced Data-as-a-Service Ecosystem
The sharing of large and interesting Big Data in cloud environments can be achieved using data-as-a-service, where a provider offers data to interested users. In enhanced data-as-a-service, the data provider also supplies compute infrastructure, allowing users to run analytics tasks local to the data and reducing the (expensive and slow) transmission of data over networks. This paper describes a services-based ecosystem that allows providers to precisely share portions of their data with users, using a model where users submit MapReduce jobs that run on the provider's Hadoop infrastructure. Providers are given mechanisms to filter, segment, and/or transform data before it reaches the user's task. The ecosystem also allows for intermediaries who offer value-added filtrations, segmentations, or transformations of the data (for example, pre-filtering a dataset to only include high-income users). We describe the RESTful services required to enable this ecosystem, introduce a prototype to demonstrate the concept, and present experiments using this ecosystem to both provide and analyze different segments of a single large data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信