为可视化混合数据扩展并行集

Shisong Wang, Debajyoti Mondal, S. Sadri, C. Roy, J. Famiglietti, Kevin A. Schneider
{"title":"为可视化混合数据扩展并行集","authors":"Shisong Wang, Debajyoti Mondal, S. Sadri, C. Roy, J. Famiglietti, Kevin A. Schneider","doi":"10.1109/PacificVis53943.2022.00024","DOIUrl":null,"url":null,"abstract":"Multi-attribute dataset visualizations are often designed based on attribute types, i.e., whether the attributes are categorical or numerical. Parallel Sets and Parallel Coordinates are two well-known techniques to visualize categorical and numerical data, respectively. A common strategy to visualize mixed data is to use multiple information linked view, e.g., Parallel Coordinates are often augmented with maps to explore spatial data with numeric attributes. In this paper, we design visualizations for mixed data, where the dataset may include numerical, categorical, and spatial attributes. The proposed solution SET-STAT-MAP is a harmonious combination of three interactive components: Parallel Sets (visualizes sets determined by the combination of categories or numeric ranges), statistics columns (visualizes numerical summaries of the sets), and a geospatial map view (visualizes the spatial information). We augment these components with colors and textures to enhance users' capability of analyzing distributions of pairs of attribute combinations. To improve scalability, we merge the sets to limit the number of possible combinations to be rendered on the display. We demonstrate the use of Set-stat-map using two different types of datasets: a meteorological dataset and an online vacation rental dataset (Airbnb). To examine the potential of the system, we collaborated with the meteorologists, which revealed both challenges and opportunities for Set-stat-map to be used for real-life visual analytics.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"54 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SET-STAT-MAP: Extending Parallel Sets for Visualizing Mixed Data\",\"authors\":\"Shisong Wang, Debajyoti Mondal, S. Sadri, C. Roy, J. Famiglietti, Kevin A. Schneider\",\"doi\":\"10.1109/PacificVis53943.2022.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-attribute dataset visualizations are often designed based on attribute types, i.e., whether the attributes are categorical or numerical. Parallel Sets and Parallel Coordinates are two well-known techniques to visualize categorical and numerical data, respectively. A common strategy to visualize mixed data is to use multiple information linked view, e.g., Parallel Coordinates are often augmented with maps to explore spatial data with numeric attributes. In this paper, we design visualizations for mixed data, where the dataset may include numerical, categorical, and spatial attributes. The proposed solution SET-STAT-MAP is a harmonious combination of three interactive components: Parallel Sets (visualizes sets determined by the combination of categories or numeric ranges), statistics columns (visualizes numerical summaries of the sets), and a geospatial map view (visualizes the spatial information). We augment these components with colors and textures to enhance users' capability of analyzing distributions of pairs of attribute combinations. To improve scalability, we merge the sets to limit the number of possible combinations to be rendered on the display. We demonstrate the use of Set-stat-map using two different types of datasets: a meteorological dataset and an online vacation rental dataset (Airbnb). To examine the potential of the system, we collaborated with the meteorologists, which revealed both challenges and opportunities for Set-stat-map to be used for real-life visual analytics.\",\"PeriodicalId\":117284,\"journal\":{\"name\":\"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"54 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis53943.2022.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis53943.2022.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多属性数据集可视化通常是基于属性类型设计的,即属性是分类的还是数字的。并行集和并行坐标是两种众所周知的可视化分类和数值数据的技术。一种常见的混合数据可视化策略是使用多个信息链接视图,例如,并行坐标通常与地图相增强,以探索具有数字属性的空间数据。在本文中,我们设计了混合数据的可视化,其中数据集可能包括数值、分类和空间属性。提出的解决方案SET-STAT-MAP是三个交互式组件的和谐组合:并行集(可视化由类别或数字范围的组合确定的集)、统计列(可视化集合的数字摘要)和地理空间地图视图(可视化空间信息)。我们用颜色和纹理来增强这些组件,以增强用户分析属性组合对分布的能力。为了提高可伸缩性,我们合并集合以限制在显示器上呈现的可能组合的数量。我们使用两种不同类型的数据集来演示Set-stat-map的使用:气象数据集和在线度假租赁数据集(Airbnb)。为了研究该系统的潜力,我们与气象学家合作,揭示了Set-stat-map用于现实生活可视化分析的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SET-STAT-MAP: Extending Parallel Sets for Visualizing Mixed Data
Multi-attribute dataset visualizations are often designed based on attribute types, i.e., whether the attributes are categorical or numerical. Parallel Sets and Parallel Coordinates are two well-known techniques to visualize categorical and numerical data, respectively. A common strategy to visualize mixed data is to use multiple information linked view, e.g., Parallel Coordinates are often augmented with maps to explore spatial data with numeric attributes. In this paper, we design visualizations for mixed data, where the dataset may include numerical, categorical, and spatial attributes. The proposed solution SET-STAT-MAP is a harmonious combination of three interactive components: Parallel Sets (visualizes sets determined by the combination of categories or numeric ranges), statistics columns (visualizes numerical summaries of the sets), and a geospatial map view (visualizes the spatial information). We augment these components with colors and textures to enhance users' capability of analyzing distributions of pairs of attribute combinations. To improve scalability, we merge the sets to limit the number of possible combinations to be rendered on the display. We demonstrate the use of Set-stat-map using two different types of datasets: a meteorological dataset and an online vacation rental dataset (Airbnb). To examine the potential of the system, we collaborated with the meteorologists, which revealed both challenges and opportunities for Set-stat-map to be used for real-life visual analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信