{"title":"基于张量积模型变换的机电系统摩擦补偿","authors":"B. Takarics, P. Korondi, P. Baranyi","doi":"10.1109/INES.2010.5483835","DOIUrl":null,"url":null,"abstract":"The Tensor Product (TP) model transformation is a recently proposed technique for transforming given Linear Parameter-Varying (LPV) state-space models into polytopic model form, namely, to parameter-varying convex combination of Linear Time Invariant (LTI) systems. The main advantage of the TP model transformation is that it is executable in a straightforward way and the Linear Matrix Inequality (LMI) based control design frameworks can immediately be applied to the resulting polytopic models to yield controllers with tractable and guaranteed performance. The main contribution of this paper is that it represents the friction of a DC servo drive in TP model form, automatically designs LMI based controller for friction compensation. The reference signal compensation is also based on the TP model transformation. The results were simulated for speed control of the DC servo drive and were compared to other control techniques.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tensor Product model transformation based friction compensation of a mechatronic system\",\"authors\":\"B. Takarics, P. Korondi, P. Baranyi\",\"doi\":\"10.1109/INES.2010.5483835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tensor Product (TP) model transformation is a recently proposed technique for transforming given Linear Parameter-Varying (LPV) state-space models into polytopic model form, namely, to parameter-varying convex combination of Linear Time Invariant (LTI) systems. The main advantage of the TP model transformation is that it is executable in a straightforward way and the Linear Matrix Inequality (LMI) based control design frameworks can immediately be applied to the resulting polytopic models to yield controllers with tractable and guaranteed performance. The main contribution of this paper is that it represents the friction of a DC servo drive in TP model form, automatically designs LMI based controller for friction compensation. The reference signal compensation is also based on the TP model transformation. The results were simulated for speed control of the DC servo drive and were compared to other control techniques.\",\"PeriodicalId\":118326,\"journal\":{\"name\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 14th International Conference on Intelligent Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INES.2010.5483835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tensor Product model transformation based friction compensation of a mechatronic system
The Tensor Product (TP) model transformation is a recently proposed technique for transforming given Linear Parameter-Varying (LPV) state-space models into polytopic model form, namely, to parameter-varying convex combination of Linear Time Invariant (LTI) systems. The main advantage of the TP model transformation is that it is executable in a straightforward way and the Linear Matrix Inequality (LMI) based control design frameworks can immediately be applied to the resulting polytopic models to yield controllers with tractable and guaranteed performance. The main contribution of this paper is that it represents the friction of a DC servo drive in TP model form, automatically designs LMI based controller for friction compensation. The reference signal compensation is also based on the TP model transformation. The results were simulated for speed control of the DC servo drive and were compared to other control techniques.