“最难”的自然可决定理论

S. Vorobyov
{"title":"“最难”的自然可决定理论","authors":"S. Vorobyov","doi":"10.1109/LICS.1997.614956","DOIUrl":null,"url":null,"abstract":"We prove that any decision procedure for a modest fragment of L. Henkin's theory of pure propositional types requires time exceeding a tower of 2's of height exponential in the length of input. Until now the highest known lower bounds for natural decidable theories were at most linearly high towers of 2's and since mid-seventies it was an open problem whether natural decidable theories requiring more than that exist. We give the affirmative answer. As an application of this today's strongest lower bound we improve known and settle new lower bounds for several problems in the simply typed lambda calculus.","PeriodicalId":272903,"journal":{"name":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"The \\\"Hardest\\\" natural decidable theory\",\"authors\":\"S. Vorobyov\",\"doi\":\"10.1109/LICS.1997.614956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that any decision procedure for a modest fragment of L. Henkin's theory of pure propositional types requires time exceeding a tower of 2's of height exponential in the length of input. Until now the highest known lower bounds for natural decidable theories were at most linearly high towers of 2's and since mid-seventies it was an open problem whether natural decidable theories requiring more than that exist. We give the affirmative answer. As an application of this today's strongest lower bound we improve known and settle new lower bounds for several problems in the simply typed lambda calculus.\",\"PeriodicalId\":272903,\"journal\":{\"name\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.1997.614956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.1997.614956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们证明了对于L. Henkin的纯命题类型理论的适度片段的任何决策过程都需要超过输入长度指数高度2的塔的时间。到目前为止,已知的自然可决定理论的最高下界是2的线性高塔,自70年代中期以来,自然可决定理论是否需要更多的存在是一个开放的问题。我们给予肯定的答复。作为今天最强下界的一个应用,我们改进了简单类型微积分中几个问题的已知下界,并确定了新的下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The "Hardest" natural decidable theory
We prove that any decision procedure for a modest fragment of L. Henkin's theory of pure propositional types requires time exceeding a tower of 2's of height exponential in the length of input. Until now the highest known lower bounds for natural decidable theories were at most linearly high towers of 2's and since mid-seventies it was an open problem whether natural decidable theories requiring more than that exist. We give the affirmative answer. As an application of this today's strongest lower bound we improve known and settle new lower bounds for several problems in the simply typed lambda calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信