基于图绘制的随机块模型差分私有社区检测

Mohamed Seif, A. Goldsmith, H. Poor
{"title":"基于图绘制的随机块模型差分私有社区检测","authors":"Mohamed Seif, A. Goldsmith, H. Poor","doi":"10.1109/CISS56502.2023.10089679","DOIUrl":null,"url":null,"abstract":"There has been significant recent progress in under-standing the fundamental limits of community detection when the graph is generated from a stochastic block model (SBM). In this paper, we study the community detection problem over binary symmetric SBMs while preserving the privacy of the individual connections between the vertices. We present and analyze the associated information-theoretic tradeoff for differentially private exact recovery of the underlying communities through deriving sufficient separation conditions between the intra-community and inter-community connection probabilities while taking into account the privacy budget and graph sketching as a speed-up technique to improve the computational complexity of maximum likelihood (ML) based recovery algorithms","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially Private Community Detection over Stochastic Block Models with Graph Sketching\",\"authors\":\"Mohamed Seif, A. Goldsmith, H. Poor\",\"doi\":\"10.1109/CISS56502.2023.10089679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been significant recent progress in under-standing the fundamental limits of community detection when the graph is generated from a stochastic block model (SBM). In this paper, we study the community detection problem over binary symmetric SBMs while preserving the privacy of the individual connections between the vertices. We present and analyze the associated information-theoretic tradeoff for differentially private exact recovery of the underlying communities through deriving sufficient separation conditions between the intra-community and inter-community connection probabilities while taking into account the privacy budget and graph sketching as a speed-up technique to improve the computational complexity of maximum likelihood (ML) based recovery algorithms\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,在理解从随机块模型(SBM)生成图时社区检测的基本限制方面取得了重大进展。在本文中,我们研究了二元对称sbm上的群体检测问题,同时保留了顶点之间单个连接的隐私性。我们通过推导社区内和社区间连接概率之间的充分分离条件,提出并分析了相关的信息论权衡,以实现底层社区的差异私有精确恢复,同时考虑到隐私预算和图形素描作为一种加速技术,以提高基于最大似然(ML)的恢复算法的计算复杂性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially Private Community Detection over Stochastic Block Models with Graph Sketching
There has been significant recent progress in under-standing the fundamental limits of community detection when the graph is generated from a stochastic block model (SBM). In this paper, we study the community detection problem over binary symmetric SBMs while preserving the privacy of the individual connections between the vertices. We present and analyze the associated information-theoretic tradeoff for differentially private exact recovery of the underlying communities through deriving sufficient separation conditions between the intra-community and inter-community connection probabilities while taking into account the privacy budget and graph sketching as a speed-up technique to improve the computational complexity of maximum likelihood (ML) based recovery algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信