{"title":"任意维度里德-所罗门编码和解码扩展RAID在gpu上","authors":"M. Curry, A. Skjellum, H. Ward, R. Brightwell","doi":"10.1109/PDSW.2008.4811887","DOIUrl":null,"url":null,"abstract":"Reed-Solomon coding is a method of generating arbitrary amounts of checksum information from original data via matrix-vector multiplication in finite fields. Previous work has shown that CPUs are not well-matched to this type of computation, but recent graphical processing units (GPUs) have been shown through a case study to perform this encoding quickly for the 3 + 3 (three data + three parity) case. In order to be utilized in a true RAID-like system, it is important to understand how well this computation can scale in the number of data disks supported. This paper details the performance of a general Reed-Solomon encoding and decoding library that is suitable for use in RAID-like systems. Both generation and recovery are performance-tested and discussed.","PeriodicalId":227342,"journal":{"name":"2008 3rd Petascale Data Storage Workshop","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Arbitrary dimension Reed-Solomon coding and decoding for extended RAID on GPUs\",\"authors\":\"M. Curry, A. Skjellum, H. Ward, R. Brightwell\",\"doi\":\"10.1109/PDSW.2008.4811887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reed-Solomon coding is a method of generating arbitrary amounts of checksum information from original data via matrix-vector multiplication in finite fields. Previous work has shown that CPUs are not well-matched to this type of computation, but recent graphical processing units (GPUs) have been shown through a case study to perform this encoding quickly for the 3 + 3 (three data + three parity) case. In order to be utilized in a true RAID-like system, it is important to understand how well this computation can scale in the number of data disks supported. This paper details the performance of a general Reed-Solomon encoding and decoding library that is suitable for use in RAID-like systems. Both generation and recovery are performance-tested and discussed.\",\"PeriodicalId\":227342,\"journal\":{\"name\":\"2008 3rd Petascale Data Storage Workshop\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd Petascale Data Storage Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDSW.2008.4811887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd Petascale Data Storage Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDSW.2008.4811887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Arbitrary dimension Reed-Solomon coding and decoding for extended RAID on GPUs
Reed-Solomon coding is a method of generating arbitrary amounts of checksum information from original data via matrix-vector multiplication in finite fields. Previous work has shown that CPUs are not well-matched to this type of computation, but recent graphical processing units (GPUs) have been shown through a case study to perform this encoding quickly for the 3 + 3 (three data + three parity) case. In order to be utilized in a true RAID-like system, it is important to understand how well this computation can scale in the number of data disks supported. This paper details the performance of a general Reed-Solomon encoding and decoding library that is suitable for use in RAID-like systems. Both generation and recovery are performance-tested and discussed.