带Buffer-Stealing的片上网络路由器设计

Wan-Ting Su, Jih-Sheng Shen, Pao-Ann Hsiung
{"title":"带Buffer-Stealing的片上网络路由器设计","authors":"Wan-Ting Su, Jih-Sheng Shen, Pao-Ann Hsiung","doi":"10.1109/ASPDAC.2011.5722177","DOIUrl":null,"url":null,"abstract":"Communication in a Network-on-Chip (NoC) can be made more efficient by designing faster routers, using larger buffers, larger number of ports and channels, and adaptive routing, all of which incur significant overheads in hardware costs. As a more economic solution, we try to improve communication efficiency without increasing the buffer size. A Buffer-Stealing (BS) mechanism is proposed, which enables the input channels that have insufficient buffer space to utilize at runtime the unused input buffers from other input channels. Implementation results of the proposed BS design for a 64-bit 5-input-buffer router show a reduction of the average packet transmission latency by up to 10.17% and an increase of the average throughput by up to 23.47%, at an overhead of 22% more hardware resources.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Network-on-Chip router design with Buffer-Stealing\",\"authors\":\"Wan-Ting Su, Jih-Sheng Shen, Pao-Ann Hsiung\",\"doi\":\"10.1109/ASPDAC.2011.5722177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Communication in a Network-on-Chip (NoC) can be made more efficient by designing faster routers, using larger buffers, larger number of ports and channels, and adaptive routing, all of which incur significant overheads in hardware costs. As a more economic solution, we try to improve communication efficiency without increasing the buffer size. A Buffer-Stealing (BS) mechanism is proposed, which enables the input channels that have insufficient buffer space to utilize at runtime the unused input buffers from other input channels. Implementation results of the proposed BS design for a 64-bit 5-input-buffer router show a reduction of the average packet transmission latency by up to 10.17% and an increase of the average throughput by up to 23.47%, at an overhead of 22% more hardware resources.\",\"PeriodicalId\":316253,\"journal\":{\"name\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2011.5722177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

通过设计更快的路由器、使用更大的缓冲区、更多的端口和通道以及自适应路由,可以提高片上网络(NoC)中的通信效率,所有这些都会导致硬件成本方面的重大开销。作为一种更经济的解决方案,我们试图在不增加缓冲区大小的情况下提高通信效率。提出了一种缓冲窃取(buffer - stealing, BS)机制,使缓冲区空间不足的输入通道能够在运行时利用来自其他输入通道的未使用的输入缓冲区。在64位5输入缓冲路由器上的实现结果表明,在硬件资源增加22%的情况下,平均分组传输延迟减少了10.17%,平均吞吐量增加了23.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network-on-Chip router design with Buffer-Stealing
Communication in a Network-on-Chip (NoC) can be made more efficient by designing faster routers, using larger buffers, larger number of ports and channels, and adaptive routing, all of which incur significant overheads in hardware costs. As a more economic solution, we try to improve communication efficiency without increasing the buffer size. A Buffer-Stealing (BS) mechanism is proposed, which enables the input channels that have insufficient buffer space to utilize at runtime the unused input buffers from other input channels. Implementation results of the proposed BS design for a 64-bit 5-input-buffer router show a reduction of the average packet transmission latency by up to 10.17% and an increase of the average throughput by up to 23.47%, at an overhead of 22% more hardware resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信