利用机器学习对近期数据集进行心肌梗死检测

N. Parveen, S. Devane, Shamima Akthar
{"title":"利用机器学习对近期数据集进行心肌梗死检测","authors":"N. Parveen, S. Devane, Shamima Akthar","doi":"10.11591/ijict.v11i1.pp20-31","DOIUrl":null,"url":null,"abstract":"In developing countries such as India, with a large aging population and limited access to medical facilities, remote and timely diagnosis of myocardial infarction (MI) has the potential to save the life of many. An electrocardiogram is the primary clinical tool utilized in the onset or detection of a previous MI incident. Artificial intelligence has made a great impact on every area of research as well as in medical diagnosis. In medical diagnosis, the hypothesis might be doctors' experience which would be used as input to predict a disease that saves the life of mankind. It is been observed that a properly cleaned and pruned dataset provides far better accuracy than an unclean one with missing values. Selection of suitable techniques for data cleaning alongside proper classification algorithms will cause the event of prediction systems that give enhanced accuracy. In this proposal detection of myocardial infarction using new parameters is proposed with increased accuracy and efficiency of the existing model. Additional parameters are used to predict MI with more accuracy. The proposed model is used to predict an early diagnosis of MI with the help of expertise experiences and data gathered from hospitals.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detection of myocardial infarction on recent dataset using machine learning\",\"authors\":\"N. Parveen, S. Devane, Shamima Akthar\",\"doi\":\"10.11591/ijict.v11i1.pp20-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In developing countries such as India, with a large aging population and limited access to medical facilities, remote and timely diagnosis of myocardial infarction (MI) has the potential to save the life of many. An electrocardiogram is the primary clinical tool utilized in the onset or detection of a previous MI incident. Artificial intelligence has made a great impact on every area of research as well as in medical diagnosis. In medical diagnosis, the hypothesis might be doctors' experience which would be used as input to predict a disease that saves the life of mankind. It is been observed that a properly cleaned and pruned dataset provides far better accuracy than an unclean one with missing values. Selection of suitable techniques for data cleaning alongside proper classification algorithms will cause the event of prediction systems that give enhanced accuracy. In this proposal detection of myocardial infarction using new parameters is proposed with increased accuracy and efficiency of the existing model. Additional parameters are used to predict MI with more accuracy. The proposed model is used to predict an early diagnosis of MI with the help of expertise experiences and data gathered from hospitals.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v11i1.pp20-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v11i1.pp20-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在印度等发展中国家,由于人口老龄化严重,获得医疗设施的机会有限,远程和及时诊断心肌梗死有可能挽救许多人的生命。心电图是诊断或发现既往心肌梗死的主要临床工具。人工智能对各个领域的研究以及医学诊断都产生了巨大的影响。在医学诊断中,假设可能是医生的经验,它将被用作预测一种拯救人类生命的疾病的输入。我们观察到,一个正确清理和修剪的数据集比一个缺失值的不干净的数据集提供更好的准确性。选择合适的数据清理技术以及适当的分类算法将导致预测系统的事件,从而提高准确性。在此建议中,提出了使用新参数检测心肌梗死,提高了现有模型的准确性和效率。附加参数用于更准确地预测心肌梗死。该模型利用专家经验和从医院收集的数据来预测心肌梗死的早期诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of myocardial infarction on recent dataset using machine learning
In developing countries such as India, with a large aging population and limited access to medical facilities, remote and timely diagnosis of myocardial infarction (MI) has the potential to save the life of many. An electrocardiogram is the primary clinical tool utilized in the onset or detection of a previous MI incident. Artificial intelligence has made a great impact on every area of research as well as in medical diagnosis. In medical diagnosis, the hypothesis might be doctors' experience which would be used as input to predict a disease that saves the life of mankind. It is been observed that a properly cleaned and pruned dataset provides far better accuracy than an unclean one with missing values. Selection of suitable techniques for data cleaning alongside proper classification algorithms will cause the event of prediction systems that give enhanced accuracy. In this proposal detection of myocardial infarction using new parameters is proposed with increased accuracy and efficiency of the existing model. Additional parameters are used to predict MI with more accuracy. The proposed model is used to predict an early diagnosis of MI with the help of expertise experiences and data gathered from hospitals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信