锥原子稀疏表示

Denis C. Ilie-Ablachim, Andra Baltoiu, Bogdan Dumitrescu
{"title":"锥原子稀疏表示","authors":"Denis C. Ilie-Ablachim, Andra Baltoiu, Bogdan Dumitrescu","doi":"10.1109/icassp49357.2023.10095127","DOIUrl":null,"url":null,"abstract":"We extend the notion of sparse representation to the case where the atoms are not vectors, but cones, hence infinite sets. The sparse representation is linear, as usual, but the most convenient vector is chosen from each selected cone. We give a cone version of Orthogonal Matching Pursuit (OMP) and show that its complexity is only a few times larger than that of OMP. The new cone OMP can be used for anomaly detection; we apply it with very good results to the detection of abnormal heartbeats.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse Representations with Cone Atoms\",\"authors\":\"Denis C. Ilie-Ablachim, Andra Baltoiu, Bogdan Dumitrescu\",\"doi\":\"10.1109/icassp49357.2023.10095127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the notion of sparse representation to the case where the atoms are not vectors, but cones, hence infinite sets. The sparse representation is linear, as usual, but the most convenient vector is chosen from each selected cone. We give a cone version of Orthogonal Matching Pursuit (OMP) and show that its complexity is only a few times larger than that of OMP. The new cone OMP can be used for anomaly detection; we apply it with very good results to the detection of abnormal heartbeats.\",\"PeriodicalId\":113072,\"journal\":{\"name\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp49357.2023.10095127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp49357.2023.10095127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将稀疏表示的概念推广到原子不是向量而是锥的情况,因此是无限集。像往常一样,稀疏表示是线性的,但从每个选定的锥中选择最方便的向量。给出了一种圆锥型的正交匹配寻优算法,并证明了其复杂度仅比正交匹配寻优算法大几倍。新型锥形OMP可用于异常检测;我们将其应用于异常心跳的检测,取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Representations with Cone Atoms
We extend the notion of sparse representation to the case where the atoms are not vectors, but cones, hence infinite sets. The sparse representation is linear, as usual, but the most convenient vector is chosen from each selected cone. We give a cone version of Orthogonal Matching Pursuit (OMP) and show that its complexity is only a few times larger than that of OMP. The new cone OMP can be used for anomaly detection; we apply it with very good results to the detection of abnormal heartbeats.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信