修复这个Bug需要多长时间?

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller
{"title":"修复这个Bug需要多长时间?","authors":"Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller","doi":"10.1109/MSR.2007.13","DOIUrl":null,"url":null,"abstract":"Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.","PeriodicalId":201749,"journal":{"name":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"392","resultStr":"{\"title\":\"How Long Will It Take to Fix This Bug?\",\"authors\":\"Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller\",\"doi\":\"10.1109/MSR.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.\",\"PeriodicalId\":201749,\"journal\":{\"name\":\"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"392\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 392

摘要

长期以来,预测软件问题的时间和精力一直是一项艰巨的任务。我们提出了一种自动预测修复工作的方法,即修复问题所花费的人-小时。我们的技术利用了现有的问题跟踪系统:给定一个新的问题报告,我们使用Lucene框架来搜索类似的、早期的报告,并使用它们的平均时间作为预测。因此,我们的方法允许早期的工作量评估,帮助分配问题和调度稳定的发布。我们使用来自JBoss项目的工作数据来评估我们的方法。给定足够数量的问题报告,我们的自动预测接近实际工作;对于bug问题,我们只差了一个小时,比天真的预测差了四倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Long Will It Take to Fix This Bug?
Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信