Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller
{"title":"修复这个Bug需要多长时间?","authors":"Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller","doi":"10.1109/MSR.2007.13","DOIUrl":null,"url":null,"abstract":"Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.","PeriodicalId":201749,"journal":{"name":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"392","resultStr":"{\"title\":\"How Long Will It Take to Fix This Bug?\",\"authors\":\"Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, A. Zeller\",\"doi\":\"10.1109/MSR.2007.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.\",\"PeriodicalId\":201749,\"journal\":{\"name\":\"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"392\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSR.2007.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Workshop on Mining Software Repositories (MSR'07:ICSE Workshops 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSR.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting the time and effort for a software problem has long been a difficult task. We present an approach that automatically predicts the fixing effort, i.e., the person-hours spent on fixing an issue. Our technique leverages existing issue tracking systems: given a new issue report, we use the Lucene framework to search for similar, earlier reports and use their average time as a prediction. Our approach thus allows for early effort estimation, helping in assigning issues and scheduling stable releases. We evaluated our approach using effort data from the JBoss project. Given a sufficient number of issues reports, our automatic predictions are close to the actual effort; for issues that are bugs, we are off by only one hour, beating naive predictions by a factor of four.