基于特征的限速标志检测使用图形处理单元

Vladimir Glavtchev, Pınar Muyan-Özçelik, Jeffrey M. Ota, John Douglas Owens
{"title":"基于特征的限速标志检测使用图形处理单元","authors":"Vladimir Glavtchev, Pınar Muyan-Özçelik, Jeffrey M. Ota, John Douglas Owens","doi":"10.1109/IVS.2011.5940539","DOIUrl":null,"url":null,"abstract":"In this study we test the idea of using a graphics processing unit (GPU) as an embedded co-processor for real-time detection of European Union (EU) speed-limit signs. The input to the system is a set of grayscale videos recorded from a forward-facing camera mounted in a vehicle. We introduce a new technique for implementing the radial symmetry detector (RSD) efficiently using the native rendering capabilities of a GPU. The technique maps the algorithms to the hardware such that the detection of speed-limit sign candidates is significantly accelerated. The system reaches up to 88% detection rate and runs at 33 frames per second on video sequences with VGA (640×480) resolution on an embedded system with an Intel Atom 230 @ 1.67 GHz CPU and a NVIDIA GeForce 9400M GS GPU.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Feature-based speed limit sign detection using a graphics processing unit\",\"authors\":\"Vladimir Glavtchev, Pınar Muyan-Özçelik, Jeffrey M. Ota, John Douglas Owens\",\"doi\":\"10.1109/IVS.2011.5940539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study we test the idea of using a graphics processing unit (GPU) as an embedded co-processor for real-time detection of European Union (EU) speed-limit signs. The input to the system is a set of grayscale videos recorded from a forward-facing camera mounted in a vehicle. We introduce a new technique for implementing the radial symmetry detector (RSD) efficiently using the native rendering capabilities of a GPU. The technique maps the algorithms to the hardware such that the detection of speed-limit sign candidates is significantly accelerated. The system reaches up to 88% detection rate and runs at 33 frames per second on video sequences with VGA (640×480) resolution on an embedded system with an Intel Atom 230 @ 1.67 GHz CPU and a NVIDIA GeForce 9400M GS GPU.\",\"PeriodicalId\":117811,\"journal\":{\"name\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2011.5940539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

在这项研究中,我们测试了使用图形处理单元(GPU)作为嵌入式协处理器来实时检测欧盟(EU)限速标志的想法。该系统的输入是一组由安装在车辆上的前置摄像头录制的灰度视频。我们介绍了一种利用GPU的本地渲染能力高效实现径向对称检测器(RSD)的新技术。该技术将算法映射到硬件,从而大大加快了对限速标志候选者的检测。该系统的检测率高达88%,在具有Intel Atom 230 @ 1.67 GHz CPU和NVIDIA GeForce 9400M GS GPU的嵌入式系统上以每秒33帧的VGA (640×480)分辨率运行视频序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature-based speed limit sign detection using a graphics processing unit
In this study we test the idea of using a graphics processing unit (GPU) as an embedded co-processor for real-time detection of European Union (EU) speed-limit signs. The input to the system is a set of grayscale videos recorded from a forward-facing camera mounted in a vehicle. We introduce a new technique for implementing the radial symmetry detector (RSD) efficiently using the native rendering capabilities of a GPU. The technique maps the algorithms to the hardware such that the detection of speed-limit sign candidates is significantly accelerated. The system reaches up to 88% detection rate and runs at 33 frames per second on video sequences with VGA (640×480) resolution on an embedded system with an Intel Atom 230 @ 1.67 GHz CPU and a NVIDIA GeForce 9400M GS GPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信