{"title":"利用局部聚合张量向量的三维形状相似性","authors":"Hedi Tabia, David Picard, Hamid Laga, P. Gosselin","doi":"10.1109/ICIP.2013.6738555","DOIUrl":null,"url":null,"abstract":"In this paper, we present an efficient 3D object retrieval method invariant to scale, orientation and pose. Our approach is based on the dense extraction of discriminative local descriptors extracted from 2D views. We aggregate the descriptors into a single vector signature using tensor products. The similarity between 3D models can then be efficiently computed with a simple dot product. Experiments on the SHREC12 commonly-used benchmark demonstrate that our approach obtains superior performance in searching for generic shapes.","PeriodicalId":388385,"journal":{"name":"2013 IEEE International Conference on Image Processing","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D shape similarity using vectors of locally aggregated tensors\",\"authors\":\"Hedi Tabia, David Picard, Hamid Laga, P. Gosselin\",\"doi\":\"10.1109/ICIP.2013.6738555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an efficient 3D object retrieval method invariant to scale, orientation and pose. Our approach is based on the dense extraction of discriminative local descriptors extracted from 2D views. We aggregate the descriptors into a single vector signature using tensor products. The similarity between 3D models can then be efficiently computed with a simple dot product. Experiments on the SHREC12 commonly-used benchmark demonstrate that our approach obtains superior performance in searching for generic shapes.\",\"PeriodicalId\":388385,\"journal\":{\"name\":\"2013 IEEE International Conference on Image Processing\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2013.6738555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2013.6738555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D shape similarity using vectors of locally aggregated tensors
In this paper, we present an efficient 3D object retrieval method invariant to scale, orientation and pose. Our approach is based on the dense extraction of discriminative local descriptors extracted from 2D views. We aggregate the descriptors into a single vector signature using tensor products. The similarity between 3D models can then be efficiently computed with a simple dot product. Experiments on the SHREC12 commonly-used benchmark demonstrate that our approach obtains superior performance in searching for generic shapes.