F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma
{"title":"基于公共天气预报的受限物联网节点太阳能预测","authors":"F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma","doi":"10.1145/3131542.3131544","DOIUrl":null,"url":null,"abstract":"Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.","PeriodicalId":166408,"journal":{"name":"Proceedings of the Seventh International Conference on the Internet of Things","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Solar energy prediction for constrained IoT nodes based on public weather forecasts\",\"authors\":\"F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma\",\"doi\":\"10.1145/3131542.3131544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.\",\"PeriodicalId\":166408,\"journal\":{\"name\":\"Proceedings of the Seventh International Conference on the Internet of Things\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Conference on the Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3131542.3131544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Conference on the Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131542.3131544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar energy prediction for constrained IoT nodes based on public weather forecasts
Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.