基于公共天气预报的受限物联网节点太阳能预测

F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma
{"title":"基于公共天气预报的受限物联网节点太阳能预测","authors":"F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma","doi":"10.1145/3131542.3131544","DOIUrl":null,"url":null,"abstract":"Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.","PeriodicalId":166408,"journal":{"name":"Proceedings of the Seventh International Conference on the Internet of Things","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Solar energy prediction for constrained IoT nodes based on public weather forecasts\",\"authors\":\"F. Kraemer, Doreid Ammar, Anders Eivind Braten, N. Tamkittikhun, David Palma\",\"doi\":\"10.1145/3131542.3131544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.\",\"PeriodicalId\":166408,\"journal\":{\"name\":\"Proceedings of the Seventh International Conference on the Internet of Things\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh International Conference on the Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3131542.3131544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Conference on the Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131542.3131544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

太阳能对于物联网(IoT)的许多场景都很重要。资源有限的设备依靠有限的能源预算来运行而不降低性能。预测太阳能是有效管理和利用资源的必要条件。虽然机器学习已经被用于预测大型发电厂的太阳能发电,但我们将基于容易获得的公共天气数据,研究如何在受限的传感器设置中使用不同的机器学习方法。所进行的评估采用商用物联网硬件,证明了所提出的解决方案在实际部署中的可行性。我们的研究结果表明,即使在数据有限的情况下,预测太阳能也是可能的,并且随着系统的运行而逐步改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solar energy prediction for constrained IoT nodes based on public weather forecasts
Solar power is important for many scenarios of the Internet of Things (IoT). Resource-constrained devices depend on limited energy budgets to operate without degrading performance. Predicting solar energy is necessary for an efficient management and utilization of resources. While machine learning is already used to predict solar power for larger power plants, we examine how different machine learning methods can be used in a constrained sensor setting, based on easily available public weather data. The conducted evaluation resorts to commercial IoT hardware, demonstrating the feasibility of the proposed solution in a real deployment. Our results show that predicting solar energy is possible even with limited access to data, progressively improving as the system runs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信