{"title":"标准细胞后3nm节点引脚可及性优化研究","authors":"J. Jeong, Jonghyun Ko, Taigon Song","doi":"10.1145/3531437.3539707","DOIUrl":null,"url":null,"abstract":"Nanosheet FETs (NSFETs) are expected to be the post-FinFET device in the technology nodes of 5 nm and beyond. However, despite the high potential of NSFETs, few studies report the impact of NSFETs in the digital VLSI’s perspective. In this paper, we present a study of NSFETs for the optimal standard cell (SDC) library design and pin accessibility-aware layout for less routing congestion and low power consumption. For this objective, we present five novel methodologies to tackle the pin accessibility issues that rise in SDC designs in extremely-low routing resource environments (4 tracks) and emphasize the importance of local trench contact (LTC) in it. Using our methodology, we improve design metrics such as power consumption, total area, and wirelength by -11.0%, -13.2%, and 16.0%, respectively. By our study, we expect the routing congestion issues that additionally occur in advanced technology nodes to be handled and better full-chip designs to be done in 3 nm and beyond.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study on Optimizing Pin Accessibility of Standard Cells in the Post-3 nm Node\",\"authors\":\"J. Jeong, Jonghyun Ko, Taigon Song\",\"doi\":\"10.1145/3531437.3539707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanosheet FETs (NSFETs) are expected to be the post-FinFET device in the technology nodes of 5 nm and beyond. However, despite the high potential of NSFETs, few studies report the impact of NSFETs in the digital VLSI’s perspective. In this paper, we present a study of NSFETs for the optimal standard cell (SDC) library design and pin accessibility-aware layout for less routing congestion and low power consumption. For this objective, we present five novel methodologies to tackle the pin accessibility issues that rise in SDC designs in extremely-low routing resource environments (4 tracks) and emphasize the importance of local trench contact (LTC) in it. Using our methodology, we improve design metrics such as power consumption, total area, and wirelength by -11.0%, -13.2%, and 16.0%, respectively. By our study, we expect the routing congestion issues that additionally occur in advanced technology nodes to be handled and better full-chip designs to be done in 3 nm and beyond.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3531437.3539707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study on Optimizing Pin Accessibility of Standard Cells in the Post-3 nm Node
Nanosheet FETs (NSFETs) are expected to be the post-FinFET device in the technology nodes of 5 nm and beyond. However, despite the high potential of NSFETs, few studies report the impact of NSFETs in the digital VLSI’s perspective. In this paper, we present a study of NSFETs for the optimal standard cell (SDC) library design and pin accessibility-aware layout for less routing congestion and low power consumption. For this objective, we present five novel methodologies to tackle the pin accessibility issues that rise in SDC designs in extremely-low routing resource environments (4 tracks) and emphasize the importance of local trench contact (LTC) in it. Using our methodology, we improve design metrics such as power consumption, total area, and wirelength by -11.0%, -13.2%, and 16.0%, respectively. By our study, we expect the routing congestion issues that additionally occur in advanced technology nodes to be handled and better full-chip designs to be done in 3 nm and beyond.