递归神经网络路面车辙深度预测方法的提出与评价

Tomoyuki Okuda, Kouyu Suzuki, N. Kohtake
{"title":"递归神经网络路面车辙深度预测方法的提出与评价","authors":"Tomoyuki Okuda, Kouyu Suzuki, N. Kohtake","doi":"10.1109/IIAI-AAI.2017.177","DOIUrl":null,"url":null,"abstract":"This paper describes a method of predicting the rutting depth by introducing Adam and dropout into MLP of neural network and GRU of recurrent neural net that can handle time series data. We built a model to predict the current rutting depth from the past rutting 3 years ago. We compared RMSE with the multiple regression model (MLR), which is most frequently used as a regression problem for the time variation of rutting depth. As a result, RMSE decreased in the order of MLR, MLP, GRU. The difference between GRU and RMSE of MLR was about 10%.","PeriodicalId":281712,"journal":{"name":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Proposal and Evaluation of Prediction of Pavement Rutting Depth by Recurrent Neural Network\",\"authors\":\"Tomoyuki Okuda, Kouyu Suzuki, N. Kohtake\",\"doi\":\"10.1109/IIAI-AAI.2017.177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a method of predicting the rutting depth by introducing Adam and dropout into MLP of neural network and GRU of recurrent neural net that can handle time series data. We built a model to predict the current rutting depth from the past rutting 3 years ago. We compared RMSE with the multiple regression model (MLR), which is most frequently used as a regression problem for the time variation of rutting depth. As a result, RMSE decreased in the order of MLR, MLP, GRU. The difference between GRU and RMSE of MLR was about 10%.\",\"PeriodicalId\":281712,\"journal\":{\"name\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI.2017.177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI.2017.177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了一种将Adam和dropout引入神经网络的MLP和递归神经网络的GRU来预测车辙深度的方法。我们建立了一个模型来预测3年前的车辙深度。将RMSE与车辙深度随时间变化最常用的多元回归模型(MLR)进行了比较。结果表明,RMSE的大小依次为MLR、MLP、GRU。MLR的GRU与RMSE的差异约为10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proposal and Evaluation of Prediction of Pavement Rutting Depth by Recurrent Neural Network
This paper describes a method of predicting the rutting depth by introducing Adam and dropout into MLP of neural network and GRU of recurrent neural net that can handle time series data. We built a model to predict the current rutting depth from the past rutting 3 years ago. We compared RMSE with the multiple regression model (MLR), which is most frequently used as a regression problem for the time variation of rutting depth. As a result, RMSE decreased in the order of MLR, MLP, GRU. The difference between GRU and RMSE of MLR was about 10%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信