B. Khodadadi, Anish Rai, Bhuwan Nepal, A. Sapkota, A. Srivastava, C. Mewes, Sujan Budhathoki, A. Hauser, Min Gao, Jiefang Li, D. Viehland, Zijian Jiang, J. Heremans, T. Mewes, S. Emori
{"title":"外延铁中的类电导率阻尼(会议报告)","authors":"B. Khodadadi, Anish Rai, Bhuwan Nepal, A. Sapkota, A. Srivastava, C. Mewes, Sujan Budhathoki, A. Hauser, Min Gao, Jiefang Li, D. Viehland, Zijian Jiang, J. Heremans, T. Mewes, S. Emori","doi":"10.1117/12.2528426","DOIUrl":null,"url":null,"abstract":"Magnetic damping impacts essential dynamics for spintronic device applications, but its fundamental mechanisms in various materials – including simple ferromagnetic metals – have yet to be understood. Here, we experimentally correlate damping with structural and transport properties of epitaxial thin films of Fe. At room temperature, the effective Gilbert damping parameter is independent of whether these films are coherently strained or partially relaxed. However, at low temperature, we find that coherently strained Fe films with higher crystalline quality and conductivity exhibit higher damping. The enhancement of low-temperature damping is greater than that from classical eddy current loss. Our observation of such conductivity-like damping, possibly governed by the intraband scattering mechanism [1], provides fundamental insight into the role of crystallinity in damping in ferromagnetic metals.\n\n[1] K. Gilmore, Y. U. Idzerda, M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007); M. A. W. Schoen et al. Nat. Phys. 12, 839 (2016).","PeriodicalId":420411,"journal":{"name":"Spintronics XII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conductivity-like damping in epitaxial Fe (Conference Presentation)\",\"authors\":\"B. Khodadadi, Anish Rai, Bhuwan Nepal, A. Sapkota, A. Srivastava, C. Mewes, Sujan Budhathoki, A. Hauser, Min Gao, Jiefang Li, D. Viehland, Zijian Jiang, J. Heremans, T. Mewes, S. Emori\",\"doi\":\"10.1117/12.2528426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic damping impacts essential dynamics for spintronic device applications, but its fundamental mechanisms in various materials – including simple ferromagnetic metals – have yet to be understood. Here, we experimentally correlate damping with structural and transport properties of epitaxial thin films of Fe. At room temperature, the effective Gilbert damping parameter is independent of whether these films are coherently strained or partially relaxed. However, at low temperature, we find that coherently strained Fe films with higher crystalline quality and conductivity exhibit higher damping. The enhancement of low-temperature damping is greater than that from classical eddy current loss. Our observation of such conductivity-like damping, possibly governed by the intraband scattering mechanism [1], provides fundamental insight into the role of crystallinity in damping in ferromagnetic metals.\\n\\n[1] K. Gilmore, Y. U. Idzerda, M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007); M. A. W. Schoen et al. Nat. Phys. 12, 839 (2016).\",\"PeriodicalId\":420411,\"journal\":{\"name\":\"Spintronics XII\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spintronics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2528426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spintronics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2528426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
磁阻尼影响自旋电子器件应用的基本动力学,但其在各种材料中的基本机制-包括简单的铁磁金属-尚未被理解。在这里,我们通过实验将阻尼与铁外延薄膜的结构和输运特性联系起来。在室温下,有效吉尔伯特阻尼参数与薄膜是相干应变还是部分松弛无关。然而,在低温下,我们发现具有更高结晶质量和电导率的相干应变铁薄膜表现出更高的阻尼。低温阻尼的增强比经典涡流损耗的增强更大。我们对这种类似电导率的阻尼的观察,可能是由带内散射机制控制的,为铁磁性金属中结晶度在阻尼中的作用提供了基本的见解K. Gilmore, Y. U. Idzerda, M. D. Stiles, Phys。Rev. Lett. 99, 027204 (2007);m.a.w. Schoen等。物理学报,12,839(2016)。
Conductivity-like damping in epitaxial Fe (Conference Presentation)
Magnetic damping impacts essential dynamics for spintronic device applications, but its fundamental mechanisms in various materials – including simple ferromagnetic metals – have yet to be understood. Here, we experimentally correlate damping with structural and transport properties of epitaxial thin films of Fe. At room temperature, the effective Gilbert damping parameter is independent of whether these films are coherently strained or partially relaxed. However, at low temperature, we find that coherently strained Fe films with higher crystalline quality and conductivity exhibit higher damping. The enhancement of low-temperature damping is greater than that from classical eddy current loss. Our observation of such conductivity-like damping, possibly governed by the intraband scattering mechanism [1], provides fundamental insight into the role of crystallinity in damping in ferromagnetic metals.
[1] K. Gilmore, Y. U. Idzerda, M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007); M. A. W. Schoen et al. Nat. Phys. 12, 839 (2016).