基于Jetson纳米计算平台的人工智能植物物种图像识别

Shruti Chavan, John Ford, Xinrui Yu, J. Saniie
{"title":"基于Jetson纳米计算平台的人工智能植物物种图像识别","authors":"Shruti Chavan, John Ford, Xinrui Yu, J. Saniie","doi":"10.1109/EIT51626.2021.9491893","DOIUrl":null,"url":null,"abstract":"The ongoing research for plant/animal species identification by computer vision engineers is exciting and vast. This paper describes a deep learning approach to identify plant species using image analysis. An efficient Artificial Intelligence System is designed and implemented with minimal components, including a camera and Jetson Nano (single-board embedded computing device). Convolutional Neural Networks are trained to capture the features from images and recognize the plant species. Thus, the experiment used, in particular, CNN architectures- AlexNet, ResNet50, and MobileNetv2, within Python’s Tensorflow framework, to accomplish species identification. Of these, AlexNet provided the best results, with 72% validation accuracy after 15 epochs. A portion of the LeafSnap dataset, containing 15 plant species and 30 images per species, was used to compare the performance of architectures.","PeriodicalId":162816,"journal":{"name":"2021 IEEE International Conference on Electro Information Technology (EIT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Plant Species Image Recognition using Artificial Intelligence on Jetson Nano Computational Platform\",\"authors\":\"Shruti Chavan, John Ford, Xinrui Yu, J. Saniie\",\"doi\":\"10.1109/EIT51626.2021.9491893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ongoing research for plant/animal species identification by computer vision engineers is exciting and vast. This paper describes a deep learning approach to identify plant species using image analysis. An efficient Artificial Intelligence System is designed and implemented with minimal components, including a camera and Jetson Nano (single-board embedded computing device). Convolutional Neural Networks are trained to capture the features from images and recognize the plant species. Thus, the experiment used, in particular, CNN architectures- AlexNet, ResNet50, and MobileNetv2, within Python’s Tensorflow framework, to accomplish species identification. Of these, AlexNet provided the best results, with 72% validation accuracy after 15 epochs. A portion of the LeafSnap dataset, containing 15 plant species and 30 images per species, was used to compare the performance of architectures.\",\"PeriodicalId\":162816,\"journal\":{\"name\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Electro Information Technology (EIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIT51626.2021.9491893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Electro Information Technology (EIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIT51626.2021.9491893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

计算机视觉工程师正在进行的植物/动物物种识别研究是令人兴奋和广泛的。本文描述了一种利用图像分析来识别植物物种的深度学习方法。一个高效的人工智能系统的设计和实现与最小的组件,包括一个摄像头和Jetson Nano(单板嵌入式计算设备)。训练卷积神经网络从图像中捕获特征并识别植物物种。因此,该实验特别使用了CNN架构——AlexNet、ResNet50和MobileNetv2,在Python的Tensorflow框架内完成物种识别。其中,AlexNet提供了最好的结果,在15次epoch后验证准确率为72%。使用LeafSnap数据集的一部分(包含15种植物和每种植物30张图像)来比较架构的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plant Species Image Recognition using Artificial Intelligence on Jetson Nano Computational Platform
The ongoing research for plant/animal species identification by computer vision engineers is exciting and vast. This paper describes a deep learning approach to identify plant species using image analysis. An efficient Artificial Intelligence System is designed and implemented with minimal components, including a camera and Jetson Nano (single-board embedded computing device). Convolutional Neural Networks are trained to capture the features from images and recognize the plant species. Thus, the experiment used, in particular, CNN architectures- AlexNet, ResNet50, and MobileNetv2, within Python’s Tensorflow framework, to accomplish species identification. Of these, AlexNet provided the best results, with 72% validation accuracy after 15 epochs. A portion of the LeafSnap dataset, containing 15 plant species and 30 images per species, was used to compare the performance of architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信