130nm CMOS技术的低压体驱动可变增益放大器

D. Arbet, M. Kovác, L. Nagy, V. Stopjaková, J. Brenkus
{"title":"130nm CMOS技术的低压体驱动可变增益放大器","authors":"D. Arbet, M. Kovác, L. Nagy, V. Stopjaková, J. Brenkus","doi":"10.1109/DDECS.2016.7482439","DOIUrl":null,"url":null,"abstract":"In this paper, a variable gain amplifier designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven approach, which brings a possibility to operate with low supply voltage (i.e. 0.6 V). Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no latchup risk that usually represents the main drawback of the bulk-driven approach. As an input stage, bulk driven transistors are used, which makes possible to operate in the rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide range, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications.","PeriodicalId":404733,"journal":{"name":"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Low-voltage bulk-driven variable gain amplifier in 130 nm CMOS technology\",\"authors\":\"D. Arbet, M. Kovác, L. Nagy, V. Stopjaková, J. Brenkus\",\"doi\":\"10.1109/DDECS.2016.7482439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a variable gain amplifier designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven approach, which brings a possibility to operate with low supply voltage (i.e. 0.6 V). Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no latchup risk that usually represents the main drawback of the bulk-driven approach. As an input stage, bulk driven transistors are used, which makes possible to operate in the rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide range, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications.\",\"PeriodicalId\":404733,\"journal\":{\"name\":\"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2016.7482439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 19th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2016.7482439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了一种采用130 nm CMOS技术设计的可变增益放大器。所提出的放大器基于批量驱动方法,这带来了在低电源电压(即0.6 V)下工作的可能性。由于仅使用0.6 V的电源电压用于放大器工作,因此没有锁存风险,这通常代表了批量驱动方法的主要缺点。作为输入级,使用了体驱动晶体管,这使得在轨到轨输入电压范围内工作成为可能。仿真结果表明,所提出的VGA增益可以在很大范围内变化,加上低电源电压的特点,使所提出的放大器适用于低电压和低功耗的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-voltage bulk-driven variable gain amplifier in 130 nm CMOS technology
In this paper, a variable gain amplifier designed in 130 nm CMOS technology is presented. The proposed amplifier is based on the bulk-driven approach, which brings a possibility to operate with low supply voltage (i.e. 0.6 V). Since the supply voltage of only 0.6 V is used for the amplifier to operate, there is no latchup risk that usually represents the main drawback of the bulk-driven approach. As an input stage, bulk driven transistors are used, which makes possible to operate in the rail-to-rail input voltage range. Achieved simulation results indicate that gain of the proposed VGA can be varied in a wide range, which together with the low supply voltage feature make the proposed amplifier useful for low-voltage and low-power applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信