火花流预测商业智能

N. Ganesh, A. Mummoorthy, R. Chandrika, A. G R
{"title":"火花流预测商业智能","authors":"N. Ganesh, A. Mummoorthy, R. Chandrika, A. G R","doi":"10.1109/ICESE46178.2019.9194677","DOIUrl":null,"url":null,"abstract":"Apache spark can process the data in real time with the test mining and natural language processing. The business intelligence can be improved by collecting and processing the data from web in real time. Process mining collects the data from event logs in process discovery. Then diagnosis the difference between the observed and reality through an event logs. And extended the data of the event. Dealing with huge data process mining finds difficulty in processing. Spark handles the data processing speed and real time. It receives the input data and segregated into batches put up in processing. The incoming data append into the already existing data for processing. It identifies the problems and quick report generation of processing data.","PeriodicalId":137459,"journal":{"name":"2019 International Conference on Emerging Trends in Science and Engineering (ICESE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spark Streaming for Predictive Business Intelligence\",\"authors\":\"N. Ganesh, A. Mummoorthy, R. Chandrika, A. G R\",\"doi\":\"10.1109/ICESE46178.2019.9194677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apache spark can process the data in real time with the test mining and natural language processing. The business intelligence can be improved by collecting and processing the data from web in real time. Process mining collects the data from event logs in process discovery. Then diagnosis the difference between the observed and reality through an event logs. And extended the data of the event. Dealing with huge data process mining finds difficulty in processing. Spark handles the data processing speed and real time. It receives the input data and segregated into batches put up in processing. The incoming data append into the already existing data for processing. It identifies the problems and quick report generation of processing data.\",\"PeriodicalId\":137459,\"journal\":{\"name\":\"2019 International Conference on Emerging Trends in Science and Engineering (ICESE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Emerging Trends in Science and Engineering (ICESE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESE46178.2019.9194677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Emerging Trends in Science and Engineering (ICESE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESE46178.2019.9194677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Apache spark可以通过测试挖掘和自然语言处理对数据进行实时处理。通过对网络数据的实时采集和处理,可以提高企业的商业智能。流程挖掘从流程发现中的事件日志中收集数据。然后通过事件日志诊断观察到的与现实之间的差异。并扩展了事件的数据。处理海量数据是过程挖掘的难点。Spark处理数据的速度和实时性。它接收输入数据,并将其分成处理中的批次。输入的数据附加到已经存在的数据中进行处理。它可以识别问题并快速生成处理数据的报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spark Streaming for Predictive Business Intelligence
Apache spark can process the data in real time with the test mining and natural language processing. The business intelligence can be improved by collecting and processing the data from web in real time. Process mining collects the data from event logs in process discovery. Then diagnosis the difference between the observed and reality through an event logs. And extended the data of the event. Dealing with huge data process mining finds difficulty in processing. Spark handles the data processing speed and real time. It receives the input data and segregated into batches put up in processing. The incoming data append into the already existing data for processing. It identifies the problems and quick report generation of processing data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信