{"title":"基于高效节能SDN商品交换机的实用流量转发方法","authors":"A. AlGhadhban, B. Shihada","doi":"10.1109/NOMS.2016.7502899","DOIUrl":null,"url":null,"abstract":"Recent SDN researches suffer from over-accumulation of unhealthy flow-load. Instead, we leverage the SDN controller network view to encode the end-to-end path information into the packet address. Our solution EncPath significantly reduces the flow-table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single and multipath routing solutions and single path solution. Also, we operated them in proactive and reactive modes. We find that EncPath flow entries in core switches in a multihomed fat-tree with 144 hosts is approximately 1000 times smaller than Equal-Cost MultiPath (ECMP) and random routing. Additionally, the number of control messages to setup the network is reduced by a factor of 200×. This, consequently, affords data-plane and control-plane devices space to process other tasks.","PeriodicalId":344879,"journal":{"name":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Energy efficient SDN commodity switch based practical flow forwarding method\",\"authors\":\"A. AlGhadhban, B. Shihada\",\"doi\":\"10.1109/NOMS.2016.7502899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent SDN researches suffer from over-accumulation of unhealthy flow-load. Instead, we leverage the SDN controller network view to encode the end-to-end path information into the packet address. Our solution EncPath significantly reduces the flow-table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single and multipath routing solutions and single path solution. Also, we operated them in proactive and reactive modes. We find that EncPath flow entries in core switches in a multihomed fat-tree with 144 hosts is approximately 1000 times smaller than Equal-Cost MultiPath (ECMP) and random routing. Additionally, the number of control messages to setup the network is reduced by a factor of 200×. This, consequently, affords data-plane and control-plane devices space to process other tasks.\",\"PeriodicalId\":344879,\"journal\":{\"name\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2016.7502899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2016 - 2016 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2016.7502899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy efficient SDN commodity switch based practical flow forwarding method
Recent SDN researches suffer from over-accumulation of unhealthy flow-load. Instead, we leverage the SDN controller network view to encode the end-to-end path information into the packet address. Our solution EncPath significantly reduces the flow-table size and the number of control messages. Consequently, the power consumption of network switches is in orders of magnitude less than other evaluated solutions. It also provides flow management flexibility and scalability. We compare EncPath with single and multipath routing solutions and single path solution. Also, we operated them in proactive and reactive modes. We find that EncPath flow entries in core switches in a multihomed fat-tree with 144 hosts is approximately 1000 times smaller than Equal-Cost MultiPath (ECMP) and random routing. Additionally, the number of control messages to setup the network is reduced by a factor of 200×. This, consequently, affords data-plane and control-plane devices space to process other tasks.