计算矩阵的n次根和矩阵扇形函数

M. Hasan, A. Hasan, Khaled B. Ejaz
{"title":"计算矩阵的n次根和矩阵扇形函数","authors":"M. Hasan, A. Hasan, Khaled B. Ejaz","doi":"10.1109/CDC.2001.980812","DOIUrl":null,"url":null,"abstract":"Several linear and higher order methods to compute nth roots of a given real or complex matrix are presented. These include Newton-like, subspace, and Krylov type methods. As a special case, the matrix sector function and other roots of an identity matrix are computed and shown to be an efficient numerical tool for computing a block eigen-decompsition of a given matrix.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Computation of matrix nth roots and the matrix sector function\",\"authors\":\"M. Hasan, A. Hasan, Khaled B. Ejaz\",\"doi\":\"10.1109/CDC.2001.980812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several linear and higher order methods to compute nth roots of a given real or complex matrix are presented. These include Newton-like, subspace, and Krylov type methods. As a special case, the matrix sector function and other roots of an identity matrix are computed and shown to be an efficient numerical tool for computing a block eigen-decompsition of a given matrix.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了计算给定实矩阵或复矩阵的n次根的几种线性和高阶方法。这些方法包括类牛顿方法、子空间方法和Krylov类型方法。作为一种特殊情况,计算了矩阵扇区函数和单位矩阵的其他根,并证明了这是计算给定矩阵的块特征分解的有效数值工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of matrix nth roots and the matrix sector function
Several linear and higher order methods to compute nth roots of a given real or complex matrix are presented. These include Newton-like, subspace, and Krylov type methods. As a special case, the matrix sector function and other roots of an identity matrix are computed and shown to be an efficient numerical tool for computing a block eigen-decompsition of a given matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信