{"title":"小型储能系统中不同结构飞轮的设计与分析及比较","authors":"S. Hassan, Boxia He, U. Khayyam","doi":"10.1109/ICPRE48497.2019.9034862","DOIUrl":null,"url":null,"abstract":"Energy can’t be created nor be destroyed but it can also be stored for later use. Flywheels made of steel are already used in many applications which run at comparatively medium speeds and are quite heavy like UPS Flywheels but the objective of this research is designing a flywheel that should be lightweight and can rotate at high speeds which can store energy for long time. Flywheel designs with hub as ellipse shaped and hexa-arm shaped are made and their analysis using Abaqus has been done to find the optimal design suitable for energy storage in small applications for long duration. Materials being Carbon Fiber(IM10) and S2 Glass Fiber are investigated and concluded that maximum stresses produced due to high rotational speed and interference are within limits, approximately 1.24GPa and 1.9GPa respectively. Multi-rims rotor can increase energy from 1.5MJ for 1rim to 5MJ for 2rims and 10MJ for 3 rims rotor.","PeriodicalId":387293,"journal":{"name":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Analysis of Flywheel for Small Scale Energy Storage System using Different Structures and their Comparison\",\"authors\":\"S. Hassan, Boxia He, U. Khayyam\",\"doi\":\"10.1109/ICPRE48497.2019.9034862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy can’t be created nor be destroyed but it can also be stored for later use. Flywheels made of steel are already used in many applications which run at comparatively medium speeds and are quite heavy like UPS Flywheels but the objective of this research is designing a flywheel that should be lightweight and can rotate at high speeds which can store energy for long time. Flywheel designs with hub as ellipse shaped and hexa-arm shaped are made and their analysis using Abaqus has been done to find the optimal design suitable for energy storage in small applications for long duration. Materials being Carbon Fiber(IM10) and S2 Glass Fiber are investigated and concluded that maximum stresses produced due to high rotational speed and interference are within limits, approximately 1.24GPa and 1.9GPa respectively. Multi-rims rotor can increase energy from 1.5MJ for 1rim to 5MJ for 2rims and 10MJ for 3 rims rotor.\",\"PeriodicalId\":387293,\"journal\":{\"name\":\"2019 4th International Conference on Power and Renewable Energy (ICPRE)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 4th International Conference on Power and Renewable Energy (ICPRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRE48497.2019.9034862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 4th International Conference on Power and Renewable Energy (ICPRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRE48497.2019.9034862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and Analysis of Flywheel for Small Scale Energy Storage System using Different Structures and their Comparison
Energy can’t be created nor be destroyed but it can also be stored for later use. Flywheels made of steel are already used in many applications which run at comparatively medium speeds and are quite heavy like UPS Flywheels but the objective of this research is designing a flywheel that should be lightweight and can rotate at high speeds which can store energy for long time. Flywheel designs with hub as ellipse shaped and hexa-arm shaped are made and their analysis using Abaqus has been done to find the optimal design suitable for energy storage in small applications for long duration. Materials being Carbon Fiber(IM10) and S2 Glass Fiber are investigated and concluded that maximum stresses produced due to high rotational speed and interference are within limits, approximately 1.24GPa and 1.9GPa respectively. Multi-rims rotor can increase energy from 1.5MJ for 1rim to 5MJ for 2rims and 10MJ for 3 rims rotor.