具有从左到右结构的JFA建模和用于依赖文本的说话人识别的新后端

P. Kenny, Themos Stafylakis, Md. Jahangir Alam, M. Kockmann
{"title":"具有从左到右结构的JFA建模和用于依赖文本的说话人识别的新后端","authors":"P. Kenny, Themos Stafylakis, Md. Jahangir Alam, M. Kockmann","doi":"10.1109/ICASSP.2015.7178860","DOIUrl":null,"url":null,"abstract":"This paper introduces a new formulation of Joint Factor Analysis (JFA) for text-dependent speaker recognition based on left-to-right modeling with tied mixture HMMs. It accommodates many different ways of extracting multiple features to characterize speakers (features may or may not be HMM state-dependent, they may be modeled with subspace or factorial priors and these priors maybe imputed from text-dependent or text-independent background data). We feed these features to a new, trainable classifier for text-dependent speaker recognition in a manner which is broadly analogous to the i-vector/PLDA cascade in text-independent speaker recognition. We have evaluated this approach on a challenging proprietary dataset consisting of telephone recordings of short English and Urdu pass-phrases collected in Pakistan. By fusing results obtained with multiple front ends, equal error rate of around 2% are achievable.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"JFA modeling with left-to-right structure and a new backend for text-dependent speaker recognition\",\"authors\":\"P. Kenny, Themos Stafylakis, Md. Jahangir Alam, M. Kockmann\",\"doi\":\"10.1109/ICASSP.2015.7178860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new formulation of Joint Factor Analysis (JFA) for text-dependent speaker recognition based on left-to-right modeling with tied mixture HMMs. It accommodates many different ways of extracting multiple features to characterize speakers (features may or may not be HMM state-dependent, they may be modeled with subspace or factorial priors and these priors maybe imputed from text-dependent or text-independent background data). We feed these features to a new, trainable classifier for text-dependent speaker recognition in a manner which is broadly analogous to the i-vector/PLDA cascade in text-independent speaker recognition. We have evaluated this approach on a challenging proprietary dataset consisting of telephone recordings of short English and Urdu pass-phrases collected in Pakistan. By fusing results obtained with multiple front ends, equal error rate of around 2% are achievable.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文介绍了一种基于捆绑混合hmm从左到右建模的文本依赖说话人识别联合因子分析(JFA)的新公式。它容纳了许多不同的方法来提取多个特征来描述说话人(特征可能是HMM状态相关的,也可能不是HMM状态相关的,它们可以用子空间或因子先验建模,这些先验可以从依赖文本或不依赖文本的背景数据中输入)。我们将这些特征输入到一个新的、可训练的分类器中,用于文本依赖的说话人识别,其方式大致类似于文本独立说话人识别中的i向量/PLDA级联。我们已经在一个具有挑战性的专有数据集上评估了这种方法,该数据集包括在巴基斯坦收集的简短英语和乌尔都语密码短语的电话录音。通过融合多个前端得到的结果,错误率在2%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JFA modeling with left-to-right structure and a new backend for text-dependent speaker recognition
This paper introduces a new formulation of Joint Factor Analysis (JFA) for text-dependent speaker recognition based on left-to-right modeling with tied mixture HMMs. It accommodates many different ways of extracting multiple features to characterize speakers (features may or may not be HMM state-dependent, they may be modeled with subspace or factorial priors and these priors maybe imputed from text-dependent or text-independent background data). We feed these features to a new, trainable classifier for text-dependent speaker recognition in a manner which is broadly analogous to the i-vector/PLDA cascade in text-independent speaker recognition. We have evaluated this approach on a challenging proprietary dataset consisting of telephone recordings of short English and Urdu pass-phrases collected in Pakistan. By fusing results obtained with multiple front ends, equal error rate of around 2% are achievable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信