不同相压双速介质模型的流动稳定性及柯西问题的正确性

A. Kroshilin, Mikhail Evgenievich Kroshilin
{"title":"不同相压双速介质模型的流动稳定性及柯西问题的正确性","authors":"A. Kroshilin, Mikhail Evgenievich Kroshilin","doi":"10.20948/mathmontis-2021-52-7","DOIUrl":null,"url":null,"abstract":"At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a two-fluid model is used with equal pressure of the phases of the medium and different velocities of the phases. The corresponding system of equations without special, postulated, stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution. \nRecently, it has been proposed to use similar models more widely, but with different pressures of the phases of the medium. Such models allow one to take into account new physical effects associated with different phase pressures and often provide hyperbolicity of the corresponding system of equations. This article analyzes the influence of the difference in the pressure of the phases of the medium on the properties of the system: the importance of the corresponding new effects, the hyperbolicity of the system of equations, the stability of its stationary solutions, and the correctness of the corresponding Cauchy problem are investigated. Three systems are considered. The first, simplest model system is based on the well-known non-hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the modified system is formally correct, but the practical possibility of using the calculation results obtained from the solution of this system should be investigated in each specific case, and depends on the calculated step and duration of the process under study. The techniques worked out to solve the first simplest system were used for other systems. As the second system, a model of the flow of a two-phase medium with different phase pressures and two momentum equations is considered. We will assume the phases are barotropic. Let us postulate an equation relating the pressure in the phases. It is proved that this system is always hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived that make it possible to determine under what conditions, due to instability, the obtained solutions are unreliable. The properties of this system are compared with the system of two-speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third system, a two-pressure model describing bubble pulsations is considered. We will assume the phases are barotropic. Conditions are determined when the system is non-hyperbolic and the Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-posedness of the Cauchy problem does not lead to the unreliability of the solution.","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flow stability and correctness of the Cauchy problem for a two-speed medium model with different phase pressures\",\"authors\":\"A. Kroshilin, Mikhail Evgenievich Kroshilin\",\"doi\":\"10.20948/mathmontis-2021-52-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a two-fluid model is used with equal pressure of the phases of the medium and different velocities of the phases. The corresponding system of equations without special, postulated, stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution. \\nRecently, it has been proposed to use similar models more widely, but with different pressures of the phases of the medium. Such models allow one to take into account new physical effects associated with different phase pressures and often provide hyperbolicity of the corresponding system of equations. This article analyzes the influence of the difference in the pressure of the phases of the medium on the properties of the system: the importance of the corresponding new effects, the hyperbolicity of the system of equations, the stability of its stationary solutions, and the correctness of the corresponding Cauchy problem are investigated. Three systems are considered. The first, simplest model system is based on the well-known non-hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the modified system is formally correct, but the practical possibility of using the calculation results obtained from the solution of this system should be investigated in each specific case, and depends on the calculated step and duration of the process under study. The techniques worked out to solve the first simplest system were used for other systems. As the second system, a model of the flow of a two-phase medium with different phase pressures and two momentum equations is considered. We will assume the phases are barotropic. Let us postulate an equation relating the pressure in the phases. It is proved that this system is always hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived that make it possible to determine under what conditions, due to instability, the obtained solutions are unreliable. The properties of this system are compared with the system of two-speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third system, a two-pressure model describing bubble pulsations is considered. We will assume the phases are barotropic. Conditions are determined when the system is non-hyperbolic and the Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-posedness of the Cauchy problem does not lead to the unreliability of the solution.\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2021-52-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2021-52-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,为了描述分散混合物的两速流动,通常采用介质相压力相等、相速度不同的双流体模型。没有特殊的、假定的、稳定项的相应方程组是非双曲的。这可能会导致寻找解决方案的困难。最近,有人建议更广泛地使用类似的模型,但采用不同的介质相压力。这种模型允许人们考虑与不同相压力有关的新物理效应,并经常提供相应方程组的双曲性。本文分析了介质相压差对系统性质的影响,探讨了相应新效应的重要性、方程组的双曲性、稳态解的稳定性以及相应柯西问题的正确性。考虑了三种系统。第一个,最简单的模型系统是基于众所周知的非双曲系统,它已经现代化了。结果表明,修正系统的柯西问题在形式上是正确的,但应用该系统解的计算结果的实际可能性应在每个具体情况下进行研究,并取决于所研究过程的计算步长和持续时间。用于解决第一个最简单系统的技术被用于其他系统。作为第二种系统,考虑了具有不同相压和两个动量方程的两相介质的流动模型。我们假设相位是正压的。让我们假设一个关于各相压强的方程。证明了该系统总是双曲的。研究了其固定解的稳定性。通过推导关系,可以确定在何种条件下,由于不稳定性,得到的解是不可靠的。将该系统的性能与介质相压分散混合物的两速流动系统进行了比较。作为第三种系统,考虑了描述气泡脉动的双压力模型。我们假设相位是正压的。当系统是非双曲型且柯西问题不正确时,确定了条件。研究了在什么条件下柯西问题的病态性会导致解的不可靠,以及在什么条件下柯西问题的病态性不会导致解的不可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow stability and correctness of the Cauchy problem for a two-speed medium model with different phase pressures
At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a two-fluid model is used with equal pressure of the phases of the medium and different velocities of the phases. The corresponding system of equations without special, postulated, stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution. Recently, it has been proposed to use similar models more widely, but with different pressures of the phases of the medium. Such models allow one to take into account new physical effects associated with different phase pressures and often provide hyperbolicity of the corresponding system of equations. This article analyzes the influence of the difference in the pressure of the phases of the medium on the properties of the system: the importance of the corresponding new effects, the hyperbolicity of the system of equations, the stability of its stationary solutions, and the correctness of the corresponding Cauchy problem are investigated. Three systems are considered. The first, simplest model system is based on the well-known non-hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the modified system is formally correct, but the practical possibility of using the calculation results obtained from the solution of this system should be investigated in each specific case, and depends on the calculated step and duration of the process under study. The techniques worked out to solve the first simplest system were used for other systems. As the second system, a model of the flow of a two-phase medium with different phase pressures and two momentum equations is considered. We will assume the phases are barotropic. Let us postulate an equation relating the pressure in the phases. It is proved that this system is always hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived that make it possible to determine under what conditions, due to instability, the obtained solutions are unreliable. The properties of this system are compared with the system of two-speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third system, a two-pressure model describing bubble pulsations is considered. We will assume the phases are barotropic. Conditions are determined when the system is non-hyperbolic and the Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-posedness of the Cauchy problem does not lead to the unreliability of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信