用于节能电动汽车的XERIC气候控制系统:首次实验结果和总体性能的数值评估

C. Isetti, E. Nannei, S. Lazzari, Bernardo Cerrai, Sergio Nari
{"title":"用于节能电动汽车的XERIC气候控制系统:首次实验结果和总体性能的数值评估","authors":"C. Isetti, E. Nannei, S. Lazzari, Bernardo Cerrai, Sergio Nari","doi":"10.1109/EVER.2018.8362410","DOIUrl":null,"url":null,"abstract":"The paper reports the main developments and results achieved so far within the EU-funded H2020 XERIC project, which is aimed at developing a new climate control system that is able to increase Battery Electric Vehicles (BEVs) autonomy thanks to its high energy efficiency. The XERIC system combines a traditional Vapor Compression Cycle (VCC) with a Liquid Desiccant Cycle (LDC), by taking advantage of an innovative component, called Three-Fluids Combined Membrane Contactor (3F-CMC). The two experimental setups arranged to test LDC alone and the overall XERIC system are presented. Then, the experimental results obtained in the first test campaign are given and discussed. Finally, the numerical tool developed in the Matlab/Simulink environment for the evaluation of the performance of the overall XERIC system is introduced and a preliminary comparison between numerical results and experimental measurements is provided.","PeriodicalId":344175,"journal":{"name":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"XERIC climate-control system for energy-efficient electric vehicles: First experimental results and numerical evaluation of the overall performance\",\"authors\":\"C. Isetti, E. Nannei, S. Lazzari, Bernardo Cerrai, Sergio Nari\",\"doi\":\"10.1109/EVER.2018.8362410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reports the main developments and results achieved so far within the EU-funded H2020 XERIC project, which is aimed at developing a new climate control system that is able to increase Battery Electric Vehicles (BEVs) autonomy thanks to its high energy efficiency. The XERIC system combines a traditional Vapor Compression Cycle (VCC) with a Liquid Desiccant Cycle (LDC), by taking advantage of an innovative component, called Three-Fluids Combined Membrane Contactor (3F-CMC). The two experimental setups arranged to test LDC alone and the overall XERIC system are presented. Then, the experimental results obtained in the first test campaign are given and discussed. Finally, the numerical tool developed in the Matlab/Simulink environment for the evaluation of the performance of the overall XERIC system is introduced and a preliminary comparison between numerical results and experimental measurements is provided.\",\"PeriodicalId\":344175,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EVER.2018.8362410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EVER.2018.8362410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这篇论文报告了欧盟资助的H2020 XERIC项目迄今为止取得的主要进展和成果,该项目旨在开发一种新的气候控制系统,由于其高能效,能够提高电池电动汽车(bev)的自主性。XERIC系统结合了传统的蒸汽压缩循环(VCC)和液体干燥剂循环(LDC),利用了一种称为三流体组合膜接触器(3F-CMC)的创新组件。介绍了单独测试LDC和整个XERIC系统的两个实验装置。然后给出了第一次试验的实验结果并进行了讨论。最后,介绍了在Matlab/Simulink环境下开发的用于评估整个XERIC系统性能的数值工具,并将数值结果与实验测量结果进行了初步比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XERIC climate-control system for energy-efficient electric vehicles: First experimental results and numerical evaluation of the overall performance
The paper reports the main developments and results achieved so far within the EU-funded H2020 XERIC project, which is aimed at developing a new climate control system that is able to increase Battery Electric Vehicles (BEVs) autonomy thanks to its high energy efficiency. The XERIC system combines a traditional Vapor Compression Cycle (VCC) with a Liquid Desiccant Cycle (LDC), by taking advantage of an innovative component, called Three-Fluids Combined Membrane Contactor (3F-CMC). The two experimental setups arranged to test LDC alone and the overall XERIC system are presented. Then, the experimental results obtained in the first test campaign are given and discussed. Finally, the numerical tool developed in the Matlab/Simulink environment for the evaluation of the performance of the overall XERIC system is introduced and a preliminary comparison between numerical results and experimental measurements is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信